
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020 1

Energy-aware routing for software-defined
multihop wireless sensor networks
F. Fernando Jurado-Lasso, Graduate Student Member, IEEE , Ken Clarke,

Andres Navarro Cadavid, Senior Member, IEEE , and Ampalavanapillai Nirmalathas, Senior Member, IEEE

!
𝒊,𝒋 ∈𝑨

𝒘𝒊𝒋𝒙𝒊𝒋

𝜵𝟐𝝍

Routing algorithm

Wireless sensor network
MATCH

Src Dst via

1 2 4

2 5 3

4 7 6

Forwarding table

Internet

0

4

8

12

16

20

120 125 130 135 140 145 150 155

No
. o

f d
ea

d 
no

de
s

Time [mins]

SP
EA-AGG
EA-AGG-TABLE

SDN Controller

Network lifetime

Abstract— In this paper, we propose an energy-aware routing
algorithm and a control overhead reduction technique for pro-
longing the network lifetime of software-defined multihop wire-
less sensor networks (SDWSNs). This is an effort to optimize the
energy consumption of WSNs that provide services to the Indus-
trial Internet of Things (IIoT). A centralized controller grants a
global view of the sensor network by introducing extra control
overhead in the network, but this leads to extra energy costs.
However, our new algorithm takes advantage of this global view
and balances the network energy by selecting paths with the
highest remaining energy level among multiple paths for each
sensor node. We also identify key functions draining energy
from the SDWSN and minimize their impact by implementing a
data packet aggregation function, and minimizing the control overhead by keeping track of the sensor nodes’ routing
tables using a simple checksum function. We show that the proposed approach prolongs the network lifetime of the
WSN by 6.5% on average compared to the standard shortest-path algorithm, and that the control overhead is reduced by
approximately 12% while still maintaining a very high packet delivery ratio.

Index Terms— Centralized routing, Industrial Internet of Things, network lifetime, software defined wireless sensor
networks, software-defined routing, wireless sensor networks.

I. INTRODUCTION

THE Internet of Things (IoT) paradigm is realized upon
the interconnection of computing devices installed in

everyday objects, enabling the exchange of information to
provide services to users [1]. As estimated by [2], billions
of IoT devices are expected to be interconnected to the
network by the beginning of this decade. This paradigm is
envisioned to soak through into the industrial manufacturing
and production, creating the Industrial IoT (IIoT), that is
anticipated to contribute to the economic growth and fast-
pace production to various manufacturing processes [3]. Most
IIoT applications including smart cities, smart grids, smart
agriculture, smart homes, etc., will be built upon sensors and
actuators. The networking of these devices have expanded
the scope of networked sensing technologies such as Wireless
Sensor Networks (WSNs).

A WSN is a set of spatially distributed sensor devices used
for: monitoring the physical conditions of the environment and
sending the collected information in a centralised manner. Indi-

Manuscript received July 30, 2020.
F. Fernando Jurado-Lasso, Ken Clarke and Ampalavanapillai Nir-

malathas are with the Department of Electrical and Electronic
Engineering, The University of Melbourne,Victoria 3010, Australia
(e-mail: fjuradolasso@unimelb.edu.au, clak@unimelb.edu.au,
nirmalat@unimelb.edu.au).

Andres Navarro Cadavid is with the Department of Information and
Communications Technologies. ICESI University, Cali, Colombia. (e-
mail: anavarro@icesi.edu.co)

vidual sensor device, often called “sensor node”, have limited
resources including central processing unit, communication
bandwidth, memory, and power source. Novel network archi-
tectures are required to extend the network lifetime and min-
imize the resource management complexities currently found
in WSNs. Currently, sensor nodes are used as autonomous
systems, meaning each individual sensor node has embedded
all the components required to operate and make decisions
without supervision. As a consequence, the management of
the limited resources of the network becomes challenging and
increases as the network size grows. Recently, researchers have
proposed Software-Defined Networking (SDN) as a potential
pathway to overcoming the above-mentioned challenges.

SDN is a networking paradigm that divide the network
in three different planes: application-, control- and data-
plane. The control plane is centralized and performs the
most process- and energy-intensive functions, whereas the data
plane simply forwards packets based on the controller’s in-
structions. The introduction of SDN concepts into WSNs cre-
ates Software-Defined Wireless Sensor Networks (SDWSNs).

The SDWSN paradigm has emerged for Low-Rate Wireless
Personal Area Networks (LR-WPANs) [4]. An SDWSN allows
dynamic reconfiguration of the functionalities or behaviors of
sensor nodes based on network-specific or network-application
requirements. In wired SDN, control packets mostly travel
in an exclusive control channel, while in wireless SDN,
the communication medium is shared. Thus, further control



2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

overhead is needed in the latter to enable communication
with the controller. As in most WSNs, the impacts on Key
Performance Indicators (KPIs) including control overhead,
data packet delivery ratio (PDR) and energy consumption are
a concern when implementing SDN abstractions into WSNs.

The replacement or manipulation of sensor nodes is gen-
erally difficult and expensive [5], [6]. Consequently, it is
expected that sensor nodes run without battery replacement
for prolonged periods of time. However, introducing SDN con-
cepts in WSNs may lead to high energy cost due to additional
functions such as: data collection, neighbor advertisement and
network configuration [7]. Thus, choosing the most energy-
efficient path to the controller, and minimizing the interaction
with sensor nodes is critical to extending the network lifetime
of the SDWSN.

A. Contribution
Given the above concerns, we focus on finding the most

energy-efficient path for data and neighbor advertisements
packets while reducing the number of network configuration
packets in the SDWSN. This paper presents a novel energy-
aware routing algorithm and a control overhead reduction
technique for enhancing the overall network lifetime of the
SDWSN while maintaining the PDR high. Firstly, we propose
a software-defined routing algorithm based on the shortest
path in terms of energy consumption. Secondly, we propose
to minimize the interaction with the controller by adding a
data-aggregation function into the routing protocol. Lastly, we
further minimize the control overhead by keeping track of
the sensor nodes’ routing table using a checksum function.
In order to evaluate these concepts, we performed multiple
emulation runs in Contiki Cooja [8], to exhibit the elements
influencing in KPIs which are: energy consumption, control
overhead, network lifetime and packet delivery ratio. In brief,
the contributions of this work are summarized below.

1) We propose a software-defined energy-aware routing al-
gorithm for WSNs.

2) We minimize the interaction with the controller using a
data-aggregation function.

3) We minimize the SDWSN control overhead by keeping
track of sensor nodes’ routing table.

4) We evaluate our approach by emulating the routing pro-
tocol using Contiki OS and Cooja network simulator.

The remainder of this research is structured as follows. Sec-
tion II relates to prior research works in software-defined
routing protocols. Section III presents a thorough description
of the SDWSN architecture and packet formats. In Section IV,
we introduce our energy-aware routing algorithm for SDWSNs
and the data-aggregation function. In Section V, the minimiza-
tion of control overhead is described. In Section VI, we present
the experimental layout and results. Lastly, Section VII draws
the conclusions and presents potential areas for future research.

II. RELATED WORKS

The SDWNS paradigm has been proposed as a poten-
tial pathway to alleviate inherent problems of WSNs such
as rigidity in run-time reconfiguration and management [4].

The centralized view of the WSN permits the controller to
promptly act to any topology change in the network. Most
research efforts in topology reconfiguration have been carried
out via numerical analysis rather than emulating the wireless
sensor network as we will show below.

There are multiple research efforts in reducing the energy
consumption of WSNs based on clustering. Heinzelman et
al. [9] presented LEACH-C; a centralized low-energy adaptive
clustering hierarchy protocol. A base station (BS) distributes
the energy load evenly among nodes. It uses a simulated
annealing algorithm to find the k optimal cluster, which is
an NP-hard problem. The algorithm attempts to minimize the
energy consumption of the non-cluster nodes in transmitting
packets to the cluster head. This work assumed that every
node is within the communication range of all other nodes
and the BS, which is not a practical solution in IIoT. Xiang
et al. [6] put forward an energy-efficient routing algorithm for
SDWSNs. Their architecture consisted of a control server, and
sensor nodes divided into clusters where there is one control
node per cluster. The main server decides the controlling node
for every cluster. They manage intra-cluster nodes to perform
different jobs. The selection of controlling nodes considers the
remaining energy and communication range of sensor nodes.
The solution to this problem is NP-hard. They proposed a
particle swarm optimization algorithm that solves the selection
of controlling nodes. The algorithm was capable of prolonging
the network lifetime of the WSN. However, the conclusions
were based on numerical analysis without considering other
practical factors affecting the network performance such as
control overhead, retransmissions, PDR and end-to-end de-
lay. Din et al. [10] presented a scheme for energy-efficient
topology management based on clustering. They proposed a
multilayered clustering architecture for changing cluster heads,
as well as the selection of forwarding nodes, and inter- and
intra-clustering routing. The change of the forwarding node
is done by implementing a routing table at each node. The
results show that the presented approach uses less energy, but
they presented no evidence for network lifetime extension and
their study also lacked control overhead analysis.

Research efforts on energy-efficiency based on energy levels
have also been investigated. Wenxing et al. [11] presented the
idea of a multidimensional energy-space based on residual
energy. Sensor nodes with less remaining energy level are
moved down to a lower energy-space dimension with different
transmissions principles. Although simulations showed that the
proposed approach could balance the overall energy expendi-
ture and extend the network lifetime, the paper assumed a
perfect Media Access Control (MAC) layer. Their simulation
is numerically based, which does not capture practical lim-
itations influencing the performance of the SDWSN. Bo et
al. [12] presented a controller, building the network topology
based upon the energy levels of nodes and distances between
nodes. Their numerical simulation shows that using energy
levels improved the network’s lifetime. However, the major
concerns of transmission delay and energy expenditure of the
extra overhead were not addressed.

Other works such as [13], [14] seek to reduce interaction
and dependency on a single controller. In [13] they try



JURADO-LASSO et al.: ENERGY-AWARE ROUTING FOR SDWSNs 3

to reduce the control overhead by configuring the network
infrastructure as Finite State Machines (FSM), whereas in [14]
they removed the single controller dependency using multiple
controllers. However, these studies present no evidence for
improved network lifetimes of the SDWSN.

As shown above, prior research efforts in topology recon-
figuration in SDWSN often utilize numerical analysis, which
ignores major factors influencing the performance of the SD-
WSN. Our contribution is in providing a novel routing protocol
for SDWSNs that prolongs the network lifetime by exploiting
the maximum remaining energy path and minimizing the
number of data- and control-overhead packets in the network,
while incorporating these practical performance limitations.
In order to achieve this, experiments were conducted using
Contiki OS [15] and a Cooja network simulator [8] which we
describe in detail later.

III. SDWSN ARCHITECTURE

In this section, we describe the network model, packet
formats, and all tables managed by the controller.

A. Network model

The feasibility and performance of SDWSNs have been
demonstrated in [13], [16]–[19]. In common with traditional
WSNs, the controller and sensor nodes have a wireless com-
munication transceiver to communicate with each other.

Below we will present our novel energy-aware routing
protocol for SDWSNs where the collected- and control-data
are transmitted to the controller in a multihop fashion, and
the SDWSN is formed as a hierarchical tree structure. Sensor
nodes report their own and neighbor’s information status to the
controller, which builds up a comprehensive view of the WSN.
Depending on the network application, the controller reconfig-
ures the sensor nodes’ routing table accordingly. As would be
expected, the traffic coming from multiple nodes, as well as the
controller, will exhaust the energy of a common node faster.
Therefore, balancing the energy consumption across sensor
nodes, and reducing the overall number interactions with the
controller is the main focus of this research paper. We have
adopted the below assumptions:

• All nodes in the SDWSN are static.
• Sensor nodes are energy-constrained.
• The initial energy is equal for every sensor node in the

WSN.
• The controller has access to mains power, thus we do not

consider the energy consumed by this node.
• Sensor nodes are unaware of their location.

The controller uses neighbor advertisement packets received
from sensor nodes to construct a connected graph G = (N,L),
where N is the set of alive nodes and L is the set of
communication links among sensor nodes. It then computes
the energy-aware routing algorithm and transmits network
configuration packets to reconfigure the network topology if
required.

Offset Octet 0 1 2 3

Octet Bit 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0 Ver. Ag
g. HL Total Length Time to Live Protocol

4 32 Header Checksum Source Address

8 64 Destination Address Options

Fig. 1: SDWSN forwarding packet format.

TABLE I: Description of fields in the header of the forwarding
packet

Field Description
Ver. Version of the protocol.
Agg. Identifies if the packet can be aggregated.
HL Header length in bytes.
Total length Payload length in bytes.
Time to Live This valued is decremented at each hop.
Protocol Upper layer protocol.
Header Checksum Error-checking of the header.
Source Address Address of the sender.
Destination Address Address of the receiver.
Options To be used in future features.

B. Packet formats
Here, we present the packet formats that enable communi-

cation in the SDWSN. The MAC and PHY layers are left as
standard without modification.

The packet format for forwarding packets is shown in Fig. 1.
The total length of the header is 10 bytes. The header fields
are described in Table I.

As stated in [7], the essential components needed in the
correct operation of an SDWSN are: neighbor discovery, data
collection, neighbor advertisement, and network configuration.

1) Neighbor Discovery: Neighbor Discovery (ND) is used to
discover neighbors, detect changes and discover the gateway
to the controller. The rate of ND packets depends on the
application [7]. Increasing the rate of ND packets allows us
to rapidly detect changes in the network but at the expenses
of an increased in the energy expenditure of sensor nodes.

All nodes in the network broadcast an ND packet contain-
ing: the rank of the node (2 bytes), an accumulated Received
Signal Strength Indicator (RSSI) to the controller (2 bytes) and
a checksum (2 bytes). This packet is placed in the payload of
the forwarding packet.

2) Data collection: The sensed information is shared with
the controller for further processing. These data packets are
routed to the controller using the routing table at each sensor
node, previously configured by the controller. The sensed data
depends on the application. We assume that the size of the
sensed data is fixed for all sensor nodes. This data comprises
a length field (1 byte), source address (2 bytes), sequence (2
bytes), sensed measurand 1 (2 bytes) and sensed measurand 2
(2 bytes).

3) Control packets: There are two SDWSN functions car-
ried in the control packet: Neighbor Advertisement (NA)
and Network Configuration (NC). These two functions are
encapsulated in the payload of the control packet format shown
in Fig. 2. The header fields are described in Table II.



4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

Offset Octet 0 1 2 3

Octet Bit 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0 Type Length Sender Rank

4 32 Sender Energy Routing Checksum

8 64 Checksum Options

Fig. 2: SDWSN control packet format.

TABLE II: Description of fields in the header of the control
packet

Field Description
Type Type of control packet in the payload.
Length Length of the payload.
Sender Rank The rank of the sender.
Sender Energy The remaining energy of the sender.
Routing Checksum Checksum of the sender’s routing table.
Checksum Error-checking of the header.
Options To be used in future features.

(i) Neighbor Advertisement (NA): Sensor nodes use NA
messages to report their own and their neighbors’ status to
the controller. The controller makes use of NA messages
to build information tables of sensor nodes and links
between nodes. It can then compute the routing tables.
The NA packet contains the neighbor address (2 bytes),
RSSI of neighbor (2 bytes) and the neighbor’s rank (2
bytes). Sensor nodes also put their remaining energy
levels in the ‘Sender Energy’ field in the control packet
header of Fig. 2.
Sensor nodes calculate their remaining energy level based
on the initial energy and the current energy consump-
tion. The current energy consumption is measured by
using [20], which simply measures the time the sensor
spends in each state. The sensor states are: processing
(cpu), low power mode (lpm), transmitting (tx), listen-
ing (rx), idle transmitting (idle tx) and idle listening
(idle rx). The energy consumption (E) is calculated as
follows:

E = V ∗ [tcpu ∗ icpu + tlpm ∗ ilpm+

ttx ∗ itx + trx ∗ irx + tidle tx ∗ iidle tx+

tidle rx ∗ iidle rx]

(1)

Where V is the supply voltage of the node, t is the time
spent in a particular state and i is the current consumption
for that particular state. The energy consumption, in the
current sample, can be expressed as:

E = V
∑
k∈S

tk ∗ ik (2)

Where S is the set of the sensor states. Therefore, the
remaining energy (RE), at time t + 1, can be expressed
in terms of the previous REt as follows:

REt+1 = REt − Et (3)

Where RE0 is the initial energy of the sensor node and
E0 = 0. All nodes use the above-mentioned energy

Algorithm 1: Remaining energy (RE) of node n

Result: RE consumed by node n.
Input : voltage (V ), current consumed in each state

(is)
Let be S := {cpu, lpm, tx, rx}.
Let ts be the time in s, where s ∈ S.
Let Ep be the energy spent in sample p.
Let REp be the remaining energy in sample p.
Let RE0 be the initial energy.
Let E0 = 0
sum = 0
for s in S do

sum = sum+ (is ∗ ts)
end
Ep = sum ∗ V // Total energy consumed.
REp+1 = REp −Ep // if p = 0, REp+1 = RE0

REp = REp+1

return REp+1

TABLE III: SDWSN links table

Source Destination Cost Lifetime [s]

1.0 6.0 120 100
2.0 7.0 89 110
8.0 15.0 56 50

consumption model to estimate the remaining energy
consumption except for the controller which is assumed
to have access to mains power. Sensor node n computes
the remaining energy level using Algorithm 1.

(ii) Network Configuration (NC): The controller uses the NC
packet to reprogram the sensor node’s routing table. This
packet contains the destination address (2 bytes) and the
next-hop address (2 bytes) of all routes to be reconfigured.

C. Controller’s tables
The controller maintains two main tables which are con-

structed based upon the reports sent by the sensor nodes:
1) links table: this table holds the connections between

sensor nodes. An example is shown in Table III. Each row
refers to a link between two nodes, and also specifies the cost
of going from source to destination, as well as the remaining
lifetime of the entry. The cost can be any metric such as ETX
(Expected Transmission Count) [21] or RSSI. The remaining
lifetime is used to remove dead links in the network.

2) Sensor nodes table: this table holds the status and prop-
erties of sensor nodes. Upon reception of an NA message, the
controller can either add an entry or update fields regarding
the sender. Fields of this table are shown in Table IV. The
energy field stores the remaining energy for the given node,
the Ranks and NB field identify key nodes in the network,
and the Alive field is a flag used for computing the routing
algorithm.

IV. ENERGY-AWARE ROUTING PROTOCOL FOR SDWSNS

In this section, we propose an energy-aware SDWSN rout-
ing algorithm that seeks to prolong the network lifetime until



JURADO-LASSO et al.: ENERGY-AWARE ROUTING FOR SDWSNs 5

TABLE IV: SDWSN sensor nodes table

Addr. RE [mJ] Ranks NB Alive LT [s]M L H O
1.0 18597 3 2 2 6 6 1 250
3.0 0 1 1 2 3 3 0 100
8.0 19568 4 1 2 3 3 1 300

M: Sensor node rank
L, H: No. of sensor nodes with lower and higher ranks, respectively
O: No. of sensor nodes with other ranks
NB: Number of neighbors
LT: Remaining lifetime for this entry

the first node dies due to energy depletion. The main objective
of the routing algorithm is to balance the energy consumption
across the WSN and reduce the number of packets flowing on
it.

Firstly, the controller and sensor nodes start broadcasting
ND packets. Sensor nodes that receive an ND packet with a
lower rank than the current rank, update the path to the con-
troller. After sensor nodes discover the path to the controller,
they start sending NA packets. Then, the controller builds the
topology of the entire network as described in Section III-C.

A. Energy balancing

The routing protocol balances the network energy by se-
lecting for each node a path with the highest remaining
energy level among multiple paths. The algorithm chooses this
‘energy-shortest’ path such that sensor nodes with less energy
also use less energy in forwarding packets. Thereby, the energy
level across the network is maintained relatively uniform, and
the lifetime and reliability of the network is improved.

Firstly, the algorithm forms a tree topology containing
information from the links table, ranks of the sensor nodes, and
the remaining energy level for each sensor node, as described
in Section III-C. An example of the tree topology is shown
in Fig. 3. Secondly, the algorithm then deals with nodes of
lower rank, namely, sensors with rank one (Sensor nodes 1,
2 and 3 in the figure). It chooses the energy-shortest path
with the highest remaining energy level and updates the total
remaining energy for the path. After finalizing all lower rank
nodes, the algorithm then includes nodes one rank higher, and
so on. The algorithm once more calculates the energy-shortest
path for each sensor node with rank two and it updates the
total remaining energy for the path for each sensor node,
as shown in rank two sensor nodes of Fig. 3. For example,
sensor node 4 has a remaining energy of 18622 mJ. This node
could potentially reach the controller with minimum hops both
through sensor nodes 1 and 2. However, for this particular
period of time, the maximum remaining energy path is through
sensor node 1 which has 18596 mJ remaining. This is larger
than the 18320 mJ for sensor node 2. The algorithm then
updates the total remaining energy for the path for node 2 to
18622+18596 = 37218 [mJ]. The same procedure is repeated
for all sensor nodes with the same rank. The algorithm then
continues calculating the energy-shortest path for all nodes
in increasing rank order. The Algorithm 2 shows the steps
involved in balance the energy consumption of the WSNs in
a particular period of time.

(1,18596) (1,18320) (1,19220)

(2,37218) (2,37952)

18622 18732

18927 18750 18123

Controller Sensor node

Sensor Rank
Total
energy to ctrl [mJ]

Sensor 
energy

(3,56145) (3,56702) (3,56075)

20

1 2 3

4 5

6 7 8

Fig. 3: Example of the tree topology.

Once the algorithm completes formation of the tree, the
controller constructs a configuration routing table. This holds
information about the target sensor node and a list of its
routes to be configured. The controller builds this table using
the Depth First Search (DFS) Algorithm [22]. Lastly, the
controller places the list of routes in an NC packet then it
delivers the control packet as proposed in [17].

After the first iteration, the algorithm then waits until
the next reconfiguration time commences. It then computes
the energy-aware algorithm once more and checks whether
the network topology has changed or not. If it has, the
controller reconfigures the network. This procedure will be
repeated until the network lifetime of the sensor network
is exhausted. The frequency of network reconfiguration is
an open research question that is still being investigated.
For example, frequent reconfiguration will cause high control
overhead in the network. This, in turn, will increase energy
consumption and impact the PDR. Infrequent reconfiguration
will reduce the control overhead, but the network may not
react appropriately to changes in network conditions. It would
make sense, therefore, to use the measured energy levels to
intelligently adapt the reconfiguration frequency, and this will
be the focus of future work.

B. Reducing number of packets

As mentioned in [7], the number of packets flowing in the
SDWSN directly affects the performance of the network. There
are two main options where we can minimize the number of
packets. One option is to aggregate control packets, which can
be NA or NC. The other option is to aggregate the data packets
sent to the controller. The first option is not desirable since we
normally need control packets delivered quickly and reliably
to maintain network functionality. The better option is then to
aggregate data packets (collected sensor data).

To achieve this, a queue system is added in each sensor
node that caches data packets from other nodes. The selection
criteria to cache a data packet is based on the aggregate flag



6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

Algorithm 2: Energy-aware routing algorithm.
Result: Tree topology
Input : energy cost C, source S, V ertices N
for i = 1→ N do

sptSet[i]← false // true if vertex i
is included
pred[i]←∞
energy[i]← 0

end
sptSet[S]← true
energy[S]←∞
for rank = 0→ maxRank do

for node = 0→ N do
if node = rank & node.energy > 0 then

while pred[node] = −1 do
u← maxEnergy(N)
sptSet[u]← true
for v = 1→ N do

if !sptSet[v] &
energy[u] +C[u][v] >= energy[v]
then

energy[v] = energy[u]+C[v][u]
pred[v] = u

end
end

end
end

end
end

in the SDWSN forwarding packet in Fig. 1. A hop can only
aggregate a packet if the aggregate flag is set, and it is then
placed in the queue. The aggregating node then waits until it
is time to send a data packet to the controller. The node can
aggregate a fixed number of packets defined by the application
and must be less than the maximum IEEE 802.15.4 [23]
packet size (127 bytes) and the remaining memory space. For
ContikiMAC, the minimum packet size is 23 bytes to ensure
the transmission is long enough so that it does not fall between
to subsequent Clear Channel Assessments (CCAs) [24]. This
includes preamble, start of frame delimiter, and length field,
and leaves 16 bytes of packet data. Experimentally, the length
of the ContikiMAC header (using our addressing scheme) is
9 bytes, the size of the SDWSN forwarding packet is 12
bytes and the header of the data aggregation packet is 1
byte, therefore, there are 22 bytes used for headers, leaving
127 − 22 = 105 bytes for the payload. When aggregating
packets we use the same packet format for data packets but
we remove the length field as it is redundant, thus, the payload
of the aggregation packet is 8 bytes. Therefore, the maximum
number of data collection packets that a node can aggregate
is 105/8 ≈ 13. The frequency of sending data packets will
normally be set by the requirements of the application. The
aggregating node places all aggregated data and its own data
in a data collection packet, and forwards the packet to the
next-hop to the destination. This packet is delivered with the

aggregate flag set to zero to ensure subsequent nodes do not
hold onto this packet and delay the delivery time even further.
The controller processes the packet by looking at the number
of data packets aggregated in the length field of the data packet
header, and then it processes all data according to the sensor
node address.

Aggregating data packets reduces both the overhead and the
number of packets flowing across the network, which improves
network performance in terms of energy consumption and
PDR.

V. CONTROL OVERHEAD REDUCTION

In this section, we proposed a technique to reduce the con-
trol overhead in the SDWSN by reducing the communication
between the controller and sensor nodes (NC packets).

As mentioned above, there are two types of control packets
flowing in the network: neighbor advertisement (NA) and
network configuration (NC) packets. It would be possible to
reduce the number of neighbors included in an NA packet
by programming sensor nodes to only advertise neighbors
that have a significant change from their previously advertised
messages. This could significantly reduce NA bytes flowing
to the controller and, thus, the energy consumption of inter-
mediate nodes could also be reduced. However, this approach
would not allow the controller to capture link status or changes
between sensor nodes. Thus, any dead links may go unnoticed,
leading to misconfiguration of the network. Therefore, we
opted to reduce the number of NC packets in a way that does
not interfere with collection of network status data, but still
increases the PDR while simultaneously reducing the overall
energy consumption of the network.

The above control overhead reduction technique is pro-
grammed in both controller and sensor nodes. Sensor nodes,
still report their own and their neighbors’ information status
to the controller using NA packets, but now they also set a
routing checksum field in the header of the control packet. It
contains a calculation of the checksum of all the current routes
in the sensor node’s routing table as shown in Algorithm 3.
This calculation is simply the one’s complement of the one’s
complement sum of all 16-bit words in the routes [25]. On
the controller side, it receives the NA packet and it processes
the attached neighbors’ information. It then stores the received
checksum in the configuration routing table. After the energy-
aware routing protocol finishes processing, the network config-
uration function starts building the routes for each sensor node
in the tree topology formed. The controller then calculates the
routing checksum over the configuration routes for that specific
sensor node and compares it with the received checksum of
the sensor node. If both checksum values match, the controller
skips that configuration packet and only sends packets with
different checksum values. The sending process starts from
the lowest ranked nodes to make sure that routes for packets
going deeper in the network are already set up.

VI. EXPERIMENTS AND RESULTS

We now evaluate the performance of the proposed energy-
aware routing algorithm for software-defined multihop wire-
less sensor networks, as well as the efficacy of the control



JURADO-LASSO et al.: ENERGY-AWARE ROUTING FOR SDWSNs 7

Algorithm 3: Calculates the routing table checksum
Result: Checksum
sum = 0
Bn ⊆ N // Neighbors of node n.
foreach route in routing table do

dest← route.dest
via← route.via
if dest /∈ Bn ∨ dest = controller then

sum = checksum(sum, dest, via)
end

overhead reduction technique. We compare it with the familiar
shortest-path routing algorithm as a baseline. As already
shown, prior software-defined routing approaches described
in Section II fail to provide implementation details of their
algorithms, and none have been tested in a network simulator
environment. In contrast, we have implemented our proposed
SDWSN architecture, energy-aware algorithm and the control
overhead reduction technique in Contiki OS, which is a
lightweight and open-source operating system for tiny net-
worked embedded systems. The experiments were conducted
in Cooja [8], which is a sensor network simulator for Contiki
OS. As the experiment requires multiple runs and relatively
long running time for comprehensive results, we opted to run
Cooja on high-performance computing infrastructure [26].

A. Simulation setup

The sensor node distribution used is shown in Fig. 4. This
topology is similar to the network topology used in [27] for a
smart city simulation. The topology has 20 sensor nodes: one
software-defined controller, which is sensor node 20, as well
as 19 sensor nodes. We used a WiSMote [28] sensor node
for the controller as it has a relatively large memory to host
tables and the routing algorithm, while we used simpler Tmote
Sky [29] for sensor nodes. The current consumption values
were taken from [29]. The optimal timing for NC packets is
still an open research question; however, a small NC period
will tend to increase the control overhead and prevent sensor
network stabilization, whereas a large NC period will hamper
the prompt balancing of energy across the network. Therefore,
we use a compromise period (≈ 5 times ND) as used in [7],
[18]. The controller is embedded in the WiSMote node (sink)
and the placement of the controller directly affects the WSN
performance. It can be located in such way that minimizes
the energy consumption of sensor nodes; however, this is not
always the optimal position to extend the NL since the solution
to this optimization problem can be located in a low density
area, resulting in an inefficient resource management in the
controller neighborhood [30]. Nodes in the vicinity of the
controller deplete their energy first, resulting in a shorter NL.
Since the objective of this paper is not to spot the optimal
placement of the controller but to show the advantages of
software-defined routing protocol, then we opted to place
the controller in one corner of the WSN. The experimental
parameters are summarized in Table V.

Fig. 4: Deployment of the SDWSN.

TABLE V: Experiment parameters

Parameter Value

Radio Medium Model Unit Disk Graph Medium Distance Loss
Simulation time 3 h
MAC protocol ContikiMAC [24]
Node types Sky & wismote
Data packet 3 mins
Max No. of aggr. packets 10
Neighbor Discovery (ND) 3 mins
Neighbor Advertisement (NA) 4 mins
Network Configuration (NC) 14 mins
Transmission range 50 m
Interference range 100 m
Supply voltage 3 V
Initial Energy (RE0) 20 J
CPU active (icpu) 1.8 mA
CPU low power mode (ilpm) 0.545 mA
TX current (itx) 17.4 mA
RX current (irx) 20 mA

B. Performance metrics

The performance and comparison of the proposed ap-
proaches presented in this paper are tested for four perfor-
mance metrics.

1) Dead Nodes: the number of sensor nodes that have
consumed all of their energy.

2) Control overhead: defined as the total accumulated num-
ber of NA and NC packets over simulation time.

3) Network lifetime (NL): defined as the time from the
SDWSN starts functioning until the time the first node dies.

4) Packet Deliver Ratio (PDR): this metric is taken as the
ratio of data packets received at the controller to the number
of data packets sent.

C. Results discussion

In this section, we discuss the experiment results for dead
nodes, control overhead, network lifetime and PDR. We ran
multiple simulations with different seeds for each routing
protocol to give more realistic results and plot the averages
in Fig. 5 with a confidence interval of 95%.

1) Dead nodes: The number of dead nodes over time is
presented in Fig. 5a. For the shortest-path algorithm (SP), the



8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

sensor nodes exhausted their energy faster in comparison with
the energy-aware routing algorithm with data aggregation (EA-
AGG) and the EA-AGG with routing table tracking (EA-AGG-
TABLE). The SP algorithm uses the same path to forward
packets, so common hops to the destination exhaust their
energy first. For the EA-AGG algorithm, the improvement
was mainly achieved via route changes from time to time that
took paths with the most remaining energy. For the EA-AGG-
TABLE algorithm, there is an extra improvement compared to
EA-AGG, due to the reduction in the number of NC packets
sent.

2) Control overhead: The number of control packets for the
three routing protocols over time are shown in Fig. 5b. As we
can see, the number of control packets for EA-AGG-TABLE
was reduced by approximately 12% in comparison with the
other two protocols. As the controller has knowledge of the
routing table for each node, it will only send NC packets to
those nodes with routing tables that do not match the routing
table as stored by the controller. This reduces the number of
NC packets flowing in the network.

3) Network lifetime: The time until the first node dies is
shown in Fig. 5c. It is clear that the SP algorithm has the
shortest lifetime, 6.5% less on average. The SP algorithm also
exhibits much larger variability with network lifetimes lying in
a range of 3-10% shorter than the other two protocols. The SP
algorithm uses the same path to forward packets until there is a
change in the topology due to a dead node. Therefore, packets
coming from deep in the network to the controller through a
common node will exhaust the common node’s energy first.
In the two new protocols, the controller continually tries to
balance the energy by reconfiguring the sensor nodes’ routing
tables based on the energy-shortest path, giving longer node
lifetimes. This also explains the narrower range in the results
mentioned above.

4) Packet Delivery Ratio (PDR): The ratio of the number of
data packets received at the controller divided by the number
of packets sent to the controller is shown in Fig. 5d. All
three protocols experienced a drop in the PDR in the first 15
minutes. This is due to sensor nodes deep in the network still
finding a path to the controller, which means some packets
get lost in the network. For the SP algorithm, the drop is
more pronounced, because, while the network settles down,
multiple NA and data packets are transmitted, increasing the
collision probability whereas, for the other two protocols, the
number of transmissions is less. Overall, all three protocols
have high PDR mainly because the MAC protocol provides
reliability to packets by retransmitting packets that are not
acknowledged. However, the most PDR-efficient protocol is
the EA-AGG-TABLE as it transmits fewer packets thanks
to (i) data aggregation, and (ii) the checksum function, that
reduces the number of data- and control-packets transmitted,
lessening the probability of collisions in the network. Near
the end of the simulation time, we can see that all protocols
experienced a slight reduction in the PDR. The reason is that
some common nodes to the controller die preventing packets
from reaching their destination.

0

4

8

12

16

20

120 125 130 135 140 145 150 155

N
o.

 o
f d

ea
d 

no
de

s

Time [mins]

SP
EA-AGG
EA-AGG-TABLE

(a) Dead nodes.

350

500

650

800

950

1100

55 75 95 115 135 155

N
o.

 o
f c

on
tr

ol
 p

ac
ke

ts

Time [mins]

SP
EA-AGG
EA-AGG-TABLE

(b) Control overhead.

131

139 140

115

120

125

130

135

140

145

SP

EA
-AG

G

EA
-AG

G-
TA
BL
E

Ti
m

e 
[m

in
s]

(c) First dead node.

94

95

96

97

98

99

100

0 30 60 90 120 150

Pa
ck

et
 D

el
iv

er
y 

Ra
tio

Time [mins]

SP

EA-AGG

EA-AGG-TABLE

(d) PDR over time.

Fig. 5: Experimental results.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel energy-aware (EA) routing
algorithm and a control overhead reduction technique for en-
hancing the overall network lifetime of a SDWSN, while also
maintaining a high PDR. We performed our experiments in
Cooja that allowed us for the first time to realistically simulate
key elements: the network conditions and physical factors
influencing the WSN performance, the underlying operating
system and the machine code instruction set that enable us to
program them as well as capture physical events happening
in the sensor nodes’ hardware. Overall, the combination of
this new EA algorithm, along with the data aggregation and
a control overhead technique, outperforms the shortest-path
algorithm in terms of dead nodes, control overhead, network
lifetime and packet delivery ratio. We have demonstrated that
the proposed approach could prolong the network lifetime of
the WSN by approximately 6.5% compared to the shortest-
path algorithm and that the control overhead was reduced by
approximately 12% while maintaining a high PDR.

This paper finds that the software-defined approach in
WSNs (SDWSN) is a promising approach to prolonging the
network lifetime of a multihop WSN. However, the proposed
routing protocol is only a starting point to explore innova-
tive routing protocols. Future work could include: the study
of reducing neighbor advertisement (NA) packets to further
reduce the control overhead of the network; alternative routing
protocols that further prolong the lifetime of the network;
intelligently adapting the timing for the frequency of network
configuration (NC) packets; and include performance metrics
such as channel status to select intermediate nodes, amongst
others.



JURADO-LASSO et al.: ENERGY-AWARE ROUTING FOR SDWSNs 9

REFERENCES

[1] C. U. Smith and C. M. Lladó, “Spe for the internet of things and other
real-time embedded systems,” in Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering Companion,
Conference Proceedings, pp. 227–232.

[2] F. Computing, “The Internet of Things: Extend the cloud to where the
things are,” Cisco Syst., San Jose, CA, USA, Report, 2016.

[3] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “Fragmentation-
based distributed control system for software-defined wireless sensor
networks,” IEEE transactions on industrial informatics, vol. 15, no. 2,
pp. 901–910, 2018.

[4] ——, “A survey on software-defined wireless sensor networks: Chal-
lenges and design requirements,” IEEE Access, vol. 5, pp. 1872–1899,
2017.

[5] L. Militano, M. Erdelj, A. Molinaro, N. Mitton, and A. Iera, “Recharging
versus replacing sensor nodes using mobile robots for network mainte-
nance,” Telecommunication Systems, vol. 63, no. 4, pp. 625–642, 2016.

[6] W. Xiang, N. Wang, and Y. Zhou, “An energy-efficient routing algorithm
for software-defined wireless sensor networks,” IEEE Sensors Journal,
vol. 16, no. 20, pp. 7393–7400, 2016.

[7] F. F. Jurado-Lasso, K. Clarke, and A. Nirmalathas, “Performance
analysis of software-defined multihop wireless sensor networks,” IEEE
Systems Journal, 2019.

[8] F. Osterlind, “A sensor network simulator for the contiki os,” Swedish
Institute of Computer Science, Report T2006-05, 2006. [Online].
Available: http://eprints.sics.se/2296/1/SICS-T–2006-05–SE.pdf

[9] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan, “An
application-specific protocol architecture for wireless microsensor net-
works,” IEEE Transactions on wireless communications, vol. 1, no. 4,
pp. 660–670, 2002.

[10] S. Din, A. Paul, A. Ahmad, and J. H. Kim, “Energy efficient topology
management scheme based on clustering technique for software defined
wireless sensor network,” Peer-to-Peer Networking and Applications,
vol. 12, no. 2, pp. 348–356, 2019.

[11] L. Wenxing, W. Muqing, and W. Yuewei, “Energy-efficient algorithm
based on multi-dimensional energy space for software-defined wireless
sensor networks,” in 2016 International Symposium on Wireless Com-
munication Systems (ISWCS). IEEE, Conference Proceedings, pp. 309–
314.

[12] H. Bo, W. Muqing, Z. Min, and L. Wenxing, “An energy aware
routing algorithm for software defined wireless sensor networks,” in
2017 IEEE/CIC International Conference on Communications in China
(ICCC). IEEE, Conference Proceedings, pp. 1–6.

[13] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:
Design, prototyping and experimentation of a stateful SDN solution for
WIreless SEnsor networks,” in Computer Communications (INFOCOM),
2015 IEEE Conference on. IEEE, Conference Proceedings, pp. 513–
521.

[14] B. T. De Oliveira, L. B. Gabriel, and C. B. Margi, “TinySDN: Enabling
multiple controllers for software-defined wireless sensor networks,”
IEEE Latin America Transactions, vol. 13, no. 11, pp. 3690–3696, 2015.

[15] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and
flexible operating system for tiny networked sensors,” in Local Computer
Networks, 2004. 29th Annual IEEE International Conference on. IEEE,
Conference Proceedings, pp. 455–462.

[16] S. Bera, S. Misra, S. K. Roy, and M. S. Obaidat, “Soft-WSN: Software-
defined WSN management system for IoT applications,” IEEE Systems
Journal, 2016.

[17] F. F. Jurado-Lasso, K. Clarke, and A. Nirmalathas, “A software-defined
management system for ip-enabled wsns,” IEEE Systems Journal, 2019.

[18] F. F. J. Lasso, K. Clarke, and A. Nirmalathas, “A software-defined
networking framework for IoT based on 6LoWPAN,” in Wireless
Telecommunications Symposium (WTS), 2018. IEEE, Conference
Proceedings, pp. 1–7.

[19] C. Buratti, A. Stajkic, G. Gardasevic, S. Milardo, M. D. Abrignani,
S. Mijovic, G. Morabito, and R. Verdone, “Testing protocols for the
Internet of Things on the EuWIn platform,” IEEE Internet of Things
Journal, vol. 3, no. 1, pp. 124–133, 2016.

[20] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes, “Powertrace: Network-
level power profiling for low-power wireless networks,” Swedish
Institute of Computer Science, Kista, Sweden, Technical Report
T2011:05 1100-3154, 2011. [Online]. Available: http://www.diva-
portal.org/smash/get/diva2:1042895/FULLTEXT01.pdf

[21] D. S. J. De Couto, “High-throughput routing for multi-hop wireless
networks,” Thesis, 2004.

[22] T. H. Cormen, Introduction to algorithms. MIT press, 2009.

[23] J. A. Gutierrez, E. H. Callaway, and R. L. Barrett, Low-rate wireless
personal area networks: enabling wireless sensors with IEEE 802.15.
4. IEEE Standards Association, 2004.

[24] A. Dunkels, “The contikimac radio duty cycling protocol,” 2011.
[25] D. J. Costello, J. Hagenauer, H. Imai, and S. B. Wicker, “Applications

of error-control coding,” IEEE Transactions on Information Theory,
vol. 44, no. 6, pp. 2531–2560, 1998.

[26] L. Lafayette, G. Sauter, L. Vu, and B. Meade, “Spartan performance
and flexibility: An hpc-cloud chimera,” OpenStack Summit, Barcelona,
2016.

[27] R. J. Tom, S. Sankaranarayanan, V. H. C. de Albuquerque, and J. J.
Rodrigues, “Aggregator based rpl for an iot-fog based power distribution
system with 6lowpan,” China Communications, vol. 17, no. 1, pp. 104–
117, 2020.

[28] WiSMote. [Online]. Available:
http://www.aragosystems.com/produits/wisnet/wismote/

[29] M. Corporaton, “Tmote sky: Datasheet,” 2006.
[30] F. Chen and R. Li, “Single sink node placement strategy in wireless

sensor networks,” in 2011 International Conference on Electric Infor-
mation and Control Engineering. IEEE, Conference Proceedings, pp.
1700–1703.

F. Fernando Jurado-Lasso (GS’18) received the B.Eng. degree in
Electronic engineering in 2012 from the Universidad del Valle, Cali,
Colombia, the M.Eng. degree in telecommunications engineering and
the Ph.D. degree in Engineering both from The University of Melbourne,
Melbourne, VIC, Australia, in 2015 and 2020, respectively.

His research interests include networked embedded systems,
software-defined wireless sensor networks, protocols and applications
for the Internet of Things.

Ken Clarke received the B.Sc. (Hons.) degree in applied physics from
Heriot–Watt University, Edinburgh, U.K., in 1985.

He has worked in the optoelectronic and telecommunications indus-
tries in various RD and engineering roles in both the U.K. and Australia
from 1985–2010, before moving to the University of Melbourne where he
is currently a Deputy Director with the Networked Society Institute. He
has authored more than 50 articles and book chapters, and produced
five patents.

Andres Navarro Cadavid is an Electronic Engineer (1993), with a Mas-
ter on Technology Management (1999), both from Universidad Pontificia
Bolivariana in Medellı́n. He obtained his PhD in Telecommunications
from Universitat Politécnica de Valencia in 2003. As ITU expert, he
advised different governments in Digital TV and Spectrum Management.
He is a participant on COST Action CA15104 IRACON and former
actions COST IC1004 and COST 2100. He is also a member of IEICE
and EurAAP. He is currently the coordinator of the PhD program on
engineering and director of the i2t research group at Universidad Icesi
since 1999. His research interests are Spectrum Management, mobile
radio planning, radio propagation and m-health.

Ampalavanapillai Nirmalathas (M’98–SM’03) received the B.Eng. and
Ph.D. degrees in electrical engineering from The University of Mel-
bourne, Melbourne, VIC, Australia, in 1993 and 1998, respectively.

He is currently a Professor with the Electrical and Electronic Engi-
neering Department, The University of Melbourne. His research inter-
ests include microwave photonics, optical wireless network integration,
broadband networks, and stability of Internet and telecom services.
He is a member of OSA and a Fellow of the Institution of Engineers
Australia.


