
IEEE SYSTEMS JOURNAL 1

A Software-Defined Management System for
IP-enabled WSNs

F. Fernando Jurado-Lasso, Graduate Student Member, IEEE, Ken Clarke,
and Ampalavanapillai Nirmalathas, Senior Member, IEEE

Abstract—Software-defined networking (SDN) offers potential
pathways to overcome the management complexity of the Internet
of Things (IoT). Previous studies have often been limited to
software simulations or general proposals only. In this work,
we design and evaluate an SDN-based management system for
Wireless Sensor Networks (WSNs) using IPv6 over Low-Power
Wireless Personal Area Networks (6LoWPAN). The framework
is described in detail covering different data-, control- and
application-plane implementations, and includes a novel address-
ing scheme and packet format. It also uses a centralized routing
protocol, located at the SDN controller, based on the shortest
path algorithm. We compare our approach with the routing
protocol for low-power and lossy networks (RPL), which uses
a distributed routing protocol. Hardware tests were carried out
in a dynamic environment, with multiple sources of interference
for different payload sizes to evaluate the impacts and practicality
of SDN in WSNs. The performance comparison shows that the
proposed SDN management system for IP-enabled WSNs using
a centralized routing protocol outperforms the RPL protocol in
terms of round-trip time (RTT), jitter, memory consumption, and
packet loss rate (PLR), despite the control overhead introduced.

Index Terms—Internet of Things, wireless sensor networks,
software-defined networks, WSN management, topology manage-
ment, task management.

I. INTRODUCTION

THE Internet of Things (IoT) is the network of billions of
interconnected devices that share information to enable

services to users. IoT comprises multiple types of intercon-
nected devices and networks [1]. Small deployments such as
smart homes can have a range of different interconnected
devices involving Wireless Sensor Networks (WSNs), smart-
phones or computers. Large deployments, such as those for
smart cities, involve multiple interconnected devices as well
as different types of communication networks. Thus, WSNs,
transport networks, mobile networks and other communica-
tions technologies must somehow all be brought seamlessly
together to provide future services to users. In an IoT network,
interconnected devices and networks need to be remotely
managed and reconfigured, regardless of vendor or type, to
provide an interoperable, scalable and reconfigurable network.

The Software-Defined Networking (SDN) paradigm has
emerged as a promising solution to the aforementioned prob-
lems. SDN simplifies the creation and introduction of new
abstractions into the network by separating the control logic,

Manuscript received January 15, 2019.
The authors are with the Department of Electrical and Elec-

tronic Engineering, The University of Melbourne, Victoria 3010, Aus-
tralia (e-mail: fjurado@student.unimelb.edu.au, clak@unimelb.edu.au, nir-
malat@unimelb.edu.au).

implemented in a logically centralized controller, from the
network infrastructure [2]. The control plane then runs the
most energy intensive functions, leaving the data plane to act
as a simple forwarding device. This communicates with the
upper layer, or application layer, using s so-called northbound
Application Programming Interface (API) and with the lower
layer, called the data plane, using the southbound API.

WSNs are considered as an enabling technology of IoT.
These are composed of wireless sensor nodes which can work
cooperatively to achieve a common goal [3]. Wireless sensor
nodes have a complete embedded system integrated with
sensors, power source, communication radios and processing
power. They are considered tiny computers because of size
and communication capabilities, and are ideal to enable the
connectivity between objects.

The implementation of SDN in WSNs is a challenge. SDN
was originally designed for wired networks, so control packets
are sent through a dedicated channel. However, in WSNs
there is only a single channel for transmission of both data
and control packets. Additionally, resources in WSNs are
usually scarce making the practical implementation of SDN
challenging.

The implementation of SDN-based management approaches
in WSNs have been surveyed by several authors [4], [5], [6].
However, many publications lack practical comparison and
performance evaluation against rival WSN protocols. Most of
the research undertaken to date has been limited to software
simulations or proposed general frameworks. Few analyses
have been done and little evidence provided regarding the ben-
efits that SDN could potentially bring to IoT. Many works in
the literature use the Zigbee [7] protocol for WSNs. However,
we propose here a software-defined wireless sensor networks
(SD-WSNs) management system that brings the flexibility
to manage and reprogram the data plane using 6LoWPAN
technology. This work differs from existing solutions, and
that first introduced in [8], by providing the following novel
features: (i) a complete description and implementation of the
communication protocols between planes, (ii) use of an operat-
ing system, (iii) a control plane able to reconfigure the network
topology, vary the transmission power of nodes, and handle
task requests, (iv) an application plane having management
software to provide secure access and network information
and, lastly, (v) an experimental performance comparison with
the RPL protocol, the routing protocol of choice for IoT.
The aim of this paper is to demonstrate the benefits and im-
pacts of removing the process-intensive and energy-consuming
functions from the 6LoWPAN protocol stack and adding a



IEEE SYSTEMS JOURNAL 2

management system to the wireless network infrastructure. We
then compare it with the traditional WSNs approach.

In this work, we first review previous research efforts in SD-
WSNs, before we then describe extensions to our previous
work done in [8] to further improve a novel and practical
software-defined management system for IP-enabled WSNs.
This is achieved in several ways: (i) the packet format has been
altered to avoid fragmentation due to large overheads, (ii) the
application layer has been incorporated into the scheme to
establish the northbound API which enables communications
with the control plane, (iii) we have set up a practical evalua-
tion scenario to test our SDN approach and, (iv) a performance
comparison, in terms of round trip time (RTT), Jitter, Packet
Loss Rate (PLR) and memory consumption between our
SDN approach and the IETF RPL (IPv6 Routing Protocol
for Low-Power and Lossy Networks) routing protocol [9] is
presented .

The remainder of this paper is organized as follows. Sec-
tion II reports research efforts to enable SDN in WSNs. In
Section III we present a detailed description of each layer of
the new framework. In Section IV, the hardware used and
the testbed topology are described. Section V explains the
performance metrics used and provides the results analysis
and discussion while, finally, in Section VI the conclusions
are drawn.

II. RELATED WORKS

SDN has emerged as a novel solution to solve the manage-
ment complexity of WSNs and IoT. Previous efforts to enable
SDN in WSNs can be found in the literature but the majority
lack experimental validation.

Luo et al. [10] proposed Sensor OpenFlow as a southbound
protocol with the goal of making the WSN infrastructure
reprogrammable by customizing the flow tables. The fact that
WSNs are considered to be data-centric and attribute-based in
comparison to traditional address-centric networks, the authors
proposed two solutions: (i) to use ZigBee 16-bit network
addresses, and concatenated value pairs which let packets be
routed based on the attributes, and (ii) to enable the Internet
Protocol (IP) protocol in WSNs. In contrast with OpenFlow,
Sensor OpenFlow supports in-networking processing, but no
evidence is provided for any type of improved performance
with their proposed southbound protocol.

TinySDN [11] was presented as an approach to reduce
the latency of multihop networks, and eliminate the WSNs
dependence on a single SDN controller, by using multiple
controllers. Researchers adopted TinyOS [12] as the operating
system for wireless sensor nodes. Their analysis was done
based on the latency for a sensor node to obtain an SDN
controller, and this was then compared to the Collection Tree
Protocol (CTP) [13]. Even though TinySDN improved the
latency of controller assignments by using multiple controllers,
CTP still outperformed TinySDN in latency when sending
a packet to the sink after the establishment of a flow had
concluded.

In [14] SDN-WISE was proposed as a solution to reduce
the large control overhead in the network. Two objectives

were defined: (i) reduce the number of control packets in
the southbound API and (ii) program the sensors as finite
state machines (FSM’s) to support operations that cannot be
supported by stateless solutions. The performance evaluation
was achieved by measuring: (i) RTT, (ii) the efficiency (the
ratio of payload bytes to total bytes in the network), and
(iii) the controller responses to requests from sensor nodes for
new table entries. Although their evaluation was compared to
previous SDN approaches, it was not evaluated against other
WSN protocols. This needs to be done to provide proof that
SD-WSN will improve the quality of network management
rather than introduce greater, or unexpected, inefficiencies in
the network.

Soft-WSN [15] was proposed as an SD-WSN management
system for IoT. The architecture is based on an SDN controller
and two different management policies [15]. Sensor nodes
used the IEEE 802.15.4 [16] protocol to communicate among
themselves and the IEEE 802.11 [17] protocol for communi-
cation between access points (APs), the controller and server.
Soft-WSN outperformed traditional WSN protocols in terms
of packet delivery ratio (PDR) and energy consumption, but
had large message overhead for control packets. In addition,
sensor nodes and AP’s have different radio communication
technologies, making communications between the SDN con-
troller and server complex.

Buratti et al. [18] are one of the few groups to compare
different protocols for the Internet of Things (IoT). These
were: (i) Software-Defined Wireless Networking (SDWN)
which had a centralized network layer protocol and routing
policies running on an external controller, (ii) ZigBee [7]
and (iii) 6LoWPAN [19]. The protocols were tested and
compared based on PLR, RTT, overhead and throughput.
The results showed that SDWN performs better for RTT and
PLR in applications where sensor nodes are fixed, whereas
ZigBee and 6LoWPAN both outperform SDWN in a dynamic
environment or where there is node mobility. However, the
SDWN protocol modifies layer three of the TCP/IP protocol
stack by adding a proprietary network layer. This leads to non-
compliance with the essential IoT requirements of scalability
and interoperability.

Minimizing network interference using SD-WSNs has also
been investigated. Orfanidis et al. [20] planned to improve
the robustness of their network by targeting different sources
of interference impacting the network. They used a statistical
machine learning approach to identify periodic interferences
affecting the WSN performance. A test-bed with multiple
sources of interference, such as Bluetooth [21] and WiFi [17]
networks, was proposed. However, the proposal lacks prac-
tical details regarding an actual physical implementation or
performance metrics.

There are several works in the literature that contemplate
alternative schemes where the WSN infrastructure is fully
reprogrammable [22], [23]. Even though these implementa-
tions bring full reconfiguration capabilities to wireless sensor
nodes, the use of reprogrammable hardware increases the
development complexity and cost. In addition, the high energy
consumption in FPGAs is a concern as discussed in [24].

Since sensor nodes are seen as small-scale computers, they



IEEE SYSTEMS JOURNAL 3

require a lightweight operating system (OS) to work [5],
[25]. The two OS’s that have achieved most attention so
far are: (i) Contiki OS which is a lightweight and open
source OS for IoT, devised for sensor nodes with limited
resources [26]. It is based on the C programming language
and supports three different network stacks; RIME, IPv4 and
IPv6. (ii) TinyOS was designed for low power sensor nodes
with limited resources but it is based on the nesC programming
language [12] and supports IPv6 in its IP based protocol stack,
namely, Berkeley Low-power IP (BLIP).

In this work, we will compare the performance of our
SDN approach against the RPL protocol, which is the routing
protocol for low-power and lossy networks (LLNs), stan-
darized by the IETF under RFC6550 [9], supported by Contiki
OS [26]. RPL was first proposed by the ROLL (Routing
Over Low-power and Lossy networks) working group at IETF
(Internet Engineering Force Task). The RPL protocol targets
large WSNs deployments and supports applications such as
industrial, commercial, home and urban networks [27]. The
RPL routing protocol sits on top of the 6LoWPAN layer and
is devised as the routing protocol of choice for the IoT. RPL
is based on a vector distance that builds the WSN as a Direct
Acyclic Graph (DAG) rooted at the sink (DAG ROOT) forming
a Destination Oriented DAGs (DODAGs). These DODAGs are
optimized, to minimize the cost to the root from any node,
given an objective function that specifies the constraints and
metrics such as latency, hop count, energy, etc [28]. Nodes
within a DODAG are assigned a rank that dictates a relative
position to the root node and other nodes in the DODAG.
The construction and maintenance of DODAGs is achieved
by sending DODAG Information Object (DIO) messages. A
DIO message can contain RPL instance, RANK, DODAGID.
Before joining a DODAG, every node in the network listen to
neighbors DIO messages. All nodes will reach the root, once
the DODAG construction has finalized.

Our previous work on SD-WSN6Lo [8] was the first attempt
at a southbound protocol, integrating SDN with the uIPv6
protocol stack of Contiki OS [29]. This work aimed to reduce
the management complexity of WSNs by moving the energy
intensive tasks from the sensor nodes to the SDN controller.
The SDN controller was programmed to reconfigure the net-
work topology and adjust the transmission power of sensor
nodes without the need for any firmware modification in the
sensor nodes. SD-WSN6Lo was demonstrated to reduce the
overall energy consumption of the network, but at the time
no performance evaluation was carried out against other WSN
protocols. The other main issue concerned the large overhead
of large IPv6 addresses that are included in the packet. This
made it impossible to carry large amounts of data, without
fragmentation, since the IEEE 802.15.4 standard supports a
maximum frame size of 127 bytes. The paper was also based
on software simulations only and did not attempt to describe
details of the architecture or offer any experimental evaluation.
The work presented below addresses these shortcomings by
examining the results from a combined hardware and software
implementation of SD-WSN6Lo, involving an SDN controller,
a web application and multiple wireless sensor nodes.

Southbound API (SD-WSN6Lo)
Data plane

…
Northbound API (REST)

SDN Cluster head (CH)
SDN End node

Control plane

Applica on plane

Mem

Sensor

RadioCPU

Power supply

Wireless link

SD-WSN6Lo API

Topology 

Mgmt

Data 

Genera on

SDN Sensor node

MATCH

SRC DST ACTION

Rou ng 

Protocol
Security Applica on n

Tx power 

Mgmt

Web 

Server

Task 

Mgmt

Fig. 1. Proposed SD-WSN architecture

IEEE 802.15.4 PHY

RDC

CSMA

IPv6

UDP

SD-WSN6Lo

6LoWPAN adaptation

IEEE 802.15.4 PHY

RDC

CSMA

IPv6

UDP

Application

Contiki 

RPL

6LoWPAN adaptation

SD-WSN node RPL node

Fig. 2. SD-WSN and RPL node protocol stack

III. PROPOSED ARCHITECTURE

The proposed framework adopts an SDN architecture as
shown in Fig. 1. It provides a complete and practical SDN
framework for IoT using 6LoWPAN. The framework is di-
vided into data-, control- and application-planes.

A. Data Plane

The data plane is the 6LoWPAN network formed by the
sensor nodes, using Contiki OS as the operating system and
the lightweight TCP/IP uIPv6 stack, represented by the lowest
layer of the architecture in Fig. 1. Sensor nodes can be
configured as either cluster heads, dark gray circles, or end
nodes, light gray circles. The protocol stacks of the SD-
WSN and RPL nodes are shown in Fig. 2. RPL nodes differ
from SD-WSN nodes in the location of processing the routing
algorithm. RPL runs the routing algorithm in each sensor node
in the network, whereas SD-WSN runs the routing algorithm
only in the centralized controller. Therefore, SD-WSN nodes
act as a forwarding device whose forwarding table is updated
by the centralized controller. Before going into the details of
sensor nodes, we first explain the addressing scheme and the
packet format.

1) Addressing scheme: the addressing scheme used is as
follows: The first 64 bits of the IPv6 address are used for
the network address. the first hextet is used for the network
prefix set by the controller, followed by the two zero hextet
and the node id of the sensor node. The last 64 bits are



IEEE SYSTEMS JOURNAL 4

TABLE I
DESCRIPTION OF THE FIELDS IN THE HEADER

Type Subtype Description
Packet length Total length of the SDN packet.

Message Type

Packet-in Flow setup request.
Packet-out Flow setup response.
Packet-out-ack Acknowledgment for packet-out.
Neighbors Neighbors advertisement.

Freq Neighbor and discovery frequency.
Seq Sequence number.
ACK Acknowledgment.
PA Power level.
Flags Flags.
Task Task configuration.

used for the host address. For example, the IPv6 address
2001:0:0:3:212:7403:3:303 of a cluster head has a network
prefix of 2001:0:0:3 and host address of 212:7403:3:303.
End nodes belonging to the cluster, share the same network
prefix but different host addresses. This allows the architecture
to support subnets, an important feature which reduces the
size of routing tables, and is extremely useful when sending
configuration packets to sensor nodes.

2) Packet format: the SDN packet structure consist of an
eight-field header, each 8-bits long. The header fields are
described in Table I.

3) Cluster head nodes: these nodes can forward packets to
other nodes in the network, enabling connectivity of the net-
work and their forwarding tables can be modified on runtime.
They run three different algorithms based on protothreads,
which are lightweight, stack-less, low-overhead threads de-
signed for memory constrained devices [30]. Sequential flow
control is done using protothreads, which avoids the use of
complex state machines:

(i) Neighbor discovery algorithm: discovers neighbors
within the neighborhood. In order to send neighbor
discovery packets, Algorithm 1 is implemented. This
algorithm waits for the timer of the discovering period
to expire and then sends the discovery packet containing
the sensor node ID as payload. The smaller the discovery
period is, the higher the overhead generated. But, in
dynamic environments, the frequency cannot be very
low in order to adapt rapid changes in the topology.
To process incoming discovery packets, Algorithm 2 is
implemented. This algorithm frees the CPU until a new
discovery packet is received. Then it adds the neighboring
cluster node and maps the link-local address to the node
id received. Lastly, if the prefix has already been set then
we build the IPv6 global address of the cluster head and
add the route if this does not already exist.

(ii) Cluster heads use the controller discovery algorithm to
discover the path to the controller. The Algorithm is
based on ranks, and it provides the number of hops
to the controller. Each cluster head broadcasts its rank.
The receiving cluster head (Algorithm 3) processes it
and updates its rank and path to the controller only if
the received rank has a lower rank value. To send rank
packets an algorithm similar to Algorithm 1 was used,

Algorithm 1 Neighbor discovery
Input: tdiscovery,node_id
Output: sends neighbor discovery packet.

1: timer ← tdiscovery
2: while true do . Loop forever
3: wait for timer to expire
4: send_broadcast(node_id)
5: timer ← tdiscovery + trandom
6: end while

Algorithm 2 Input neighbor discovery
Require: discovery_packet, pre f ix
Ensure: adds neighbors, builds IPv6 address.

1: while true do
2: wait for discovery_packet to arrive
3: nbr_lladdr ← discovery_packet.lladdr
4: nbr_mac← discovery_packet.mac
5: nbr_id ← discovery_packet.node_id
6: if add_neighbor(nbr_lladdr,nbr_mac) then
7: map(nbr_lladdr,nbr_id)
8: if Prefix set then
9: nbr_ipaddr ←

build_global_addr(pre f ix,nbr_mac,nbr_id)
10: if !route exist then
11: add_route(nbr_ipaddr,nbr_lladdr)
12: end if
13: end if
14: end if
15: end while

but instead of sending a node id, it sends the rank and
network prefix set by the controller. The Algorithm waits
until the node obtains the network prefix and at least one
neighbor has been found before sending rank packets.

(iii) Lastly, the algorithm of the SD-WSN6Lo protocol, which
sits on top of the uIP6 protocol stack provided by Contiki
OS, comes into play. This protocol provides various
services, depending of the type of sensor node. In the
case for end nodes it; (i) builds, parses and processes
SD-WSN packets such as packet-in and packet-out con-
trol messages, (ii) builds, sends and processes neighbor
and rank advertisement messages, (iii) keeps track of the
state of neighbors (the neighbor table attributes are: node
ID, RSSI), (iv) manages the forwarding table and (v) sets
the transmission power of nodes. For the controller, the
protocol additionally manages the queueing system and
the communication with the northbound API. Removing
and adding additional types of service is done by using
pre-processor flags. This frees up memory from sensor
nodes for services no longer required. The SD-WSN6Lo
protocol uses the UDP transport protocol to deliver con-
trol messages in the southbound API. The uip6 protocol
routes IPv6 packets. The 6LoWPAN adaptation layer
enables the transmission and reception of IPv6 packets
over IEEE 802.15.4 radios. Contiki OS provides multiple
protocols for the MAC, RDC (Radio Duty Cycling) and



IEEE SYSTEMS JOURNAL 5

Algorithm 3 Input rank packets
Require: rank_packet
Ensure: Finds path to controller

1: while true do
2: wait for rank_packet . Received rank
3: nrank ← rank_packet.rank
4: nbr_lladdr ← rank_packet.lladdr
5: npre f ix ← rank_packet.pre f ix
6: nbr_id ← rank_packet.node_id
7: if nrank < rank then
8: pre f ix ← npre f ix
9: rank ← nrank + 1

10: map(nbr_lladdr,nbr_id)
11: build_my_global_addr(pre f ix,mac,node_id)
12: add_route(ctlr_ipaddr,nbr_lladdr) . update

controller route
13: timer ← trandom
14: wait for timer to expire
15: send_rank(pre f ix,rank)
16: end if
17: end while

radio layers.
4) End nodes: sensor devices configured as end nodes only

send and receive packets. They do not forward packets to
other nodes in the network and have a smaller firmware size
than cluster heads. They also do not perform cluster discovery,
controller discovery, and forwarding of packets, etc. Tasks in
end nodes are reconfigurable via control packets coming from
the SDN controller.

The discovery of cluster heads is done using the Neighbor
Discovery Protocol (NDP) for IPv6 [19]. NDP uses the
ICMPv6 (Internet Control Message Protocol version 6) [31]
protocol to perform functions for the goal of router solicitation,
router advertisement, neighbour solicitation, and neighbour
advertisement. End nodes receive NDP router advertisements
and retrieve the prefix set by the controller. Then, they create
their own global IPv6 addresses from it. The creation of the
global IPv6 address is done in such a way that the node
belongs to the subnet of the cluster head, as discussed in
Section III-A1.

5) Communication between SD-WSN nodes: to enable
communication between SD-WSN nodes, we use IEEE
802.15.4 radios, commonly used for low power and lossy
networks, along with the 6LoWPAN adaption layer to send
and receive IPv6 packets over IEEE 802.15.4. In addition, the
vast majority of sensor nodes available in the market use IEEE
802.15.4 radio technology. Consequently, we assume sensor
nodes support the IEEE 802.15.4 communication technology.

B. Control Plane

This plane hosts all of the network intelligence. Most of
the energy intensive functions of the network also live in the
control plane. The protocol stack of the controller is shown in
Fig. 3. The Controller sends and receives packets to both the
6LoWPAN infrastructure (Data plane) and application layer.

6LoWPAN 

adaptation

IPv6

UDP

S
li

p
 R

a
d

io

Management 

(Routing, Tasks, 

etc.)

TCP

CSMA

Border router 

RDC

SLIP

driver

Wi-Fi 

Ethernet

PHY

SLIP

driver

CSMA

RDC

IEEE 802.15.4 

PHY

Web 

Application
SDWSN6Lo

Fig. 3. The controller’s protocol stack

This plane is programmed to perform the following tasks:
handle communication between planes, run routing algorithms,
build control packets, and provide a queuing system to reliable
deliver control packets. This plane makes use of the SD-
WSN6Lo protocol to deliver control packets to the 6LoWPAN
infrastructure. The tasks in detail are:

1) Communication between planes: the control plane com-
municates with the plane above via the internet, as shown in
Fig. 1, using HTTP request and HTTP Post messages [32].

The communication with the sensor infrastructure (Data
plane) is done using a slip radio. A slip radio enables the
controller to send IEEE 802.15.4 packets to the sensor nodes.
The controller, hosted in a Linux computer, uses the Serial
Line Internet Protocol (SLIP) to encapsulate Internet Protocol
packets and send them over serial ports [33]. The slip radio
forwards the packets using the IEEE 802.15.4 radio. When re-
ceiving a packet, the slip radio processes the incoming packet
and sends it to the controller through the serial interface. The
controller then de-encapsulates the packet, processes and sends
it to the layer above.

SD-WSN nodes can generate control packets either using
a periodical or reactive approach. The periodical approach
is configured by the controller to advise SD-WSN nodes to
send an update of their neighbors with a specified frequency.
The reactive approach is generated by SD-WSN nodes either
when detecting a change in their neighbors, or when they
receive a packet whose destination route is unknown. This
approach immediately warns the controller about potential
changes in the network topology (e.g. due to interference,
battery depletion, etc.).

2) Routing Algorithm: to demonstrate the reconfiguration
capabilities of the proposed architecture, we have implemented
the Shortest Path algorithm [34]. This algorithm finds the
shortest path, which can be measured using various means,
from a source to a destination in a given graph. This routing
algorithm is often used to reduce the number of hops to
destination. We also included the capability to intelligently
adapt the transmission power of the nodes based on the longest
link in the solution of the shortest path problem. In this paper,
we used the Received Signal Strength Indicator (RSSI) as
the cost matrix for the shortest path algorithm, which is an
estimation of the power level of the received signal. The



IEEE SYSTEMS JOURNAL 6

implementation uses the Dijkstra algorithm [34] and it is
shown in Algorithm 4.

Algorithm 4 Shortest Path based on RSSI
Input: ntwk_table
Output: Finds shortest path

1: Edges← nbr_table_edges
2: nvertex ← number_vertices(ntwk_table)
3: nedges ← number_edges(ntwk_table)
4: Let C be a nvertex × nvertex cost matrix
5: C ← ntwk_table.rssi
6: if nvertex > 1 then
7: if Compute_Dijkstra(C,nvertex,nedges) then
8: return edges
9: else

10: return NULL
11: end if
12: end if

3) Construction of control packets: this finds the correct
paths to deliver control packets to each sensor node in the
network and builds them. The main complexity is in delivering
control routing packets to nodes without a direct link to the
controller. How can this be done when every node on the path
to the destination must first be configured?

The algorithm proposed to deliver and build control packets
to the 6LoWPAN network is shown in Algorithm 5. The
following assumptions are made:

• The controller node ID is equal to one, and all other nodes
will have ID’s of a higher number.

• All cluster heads are placed first.

Algorithm 5 Generation of control packets
Require: edges,nvertex,FL AG
Ensure: Control packets for network.

1: for i ← 2,nvertex do . avoid controller id
2: nbr_ctrl ← find_path(i,1,nvertex, edges)
3: nbr_node← find_path(1, i,nvertex, edges)
4: nearest_nbr ← nbr_node
5: while nbr_node , i do
6: nbr ← nbr_node
7: nbr_node← find_path(nbr, i,nvertex, edges)
8: if FLAG then . adjust power?
9: PA← cal_pa(edges,nvertex,nbr)

10: end if
11:
12: pkt ← pkt(nbr, i,nbr_node,nearest_nbr,PA) .

pkt(node_id, dest_node, forward_node, nbr_node, pa)
13: add_queue(pkt)
14: end while
15: if FLAG then
16: PA← cal_pa(edges,nvertex, i)
17: end if
18: pkt ← pkt(i,1,nbr_ctrl,nearest_nbr,PA)
19: add_queue(pkt)
20: end for

To find a path from node v to node w, we use the Depth First
Search Algorithm (DFS) [35]. The DFS algorithm traverses the
tree data structure by exploring each branch as far as possible
before backtracking.

4) Queuing system: the distribution of control packets is of
high priority as we want to ensure that configuration packets
sent to update the routing table of a node are correctly ac-
knowledged. To achieve this, we propose a FIFO (First In First
Out) queuing system along with an acknowledgement. The
queue will store configuration packets built by the controller
in order of arrival and the protothread will try to deliver the
packet to the destination until it gets acknowledged by the
receiver. The algorithm is also based on protothreads and it is
shown in Algorithm 6.

The delivery of control packets can be done in realtime
by the control plane. This can be triggered either by the
application- or data-plane. The process of reconfiguring the
network directly affects the PDR and delay performance via
collision of control- and data-packets in the wireless com-
munication medium. These data packets may also have been
delayed in queues and multiple transmissions, as discussed
in [36]. As the frequency of control information exchanged
with the data plane increases, then the control overhead will
also increase.

Algorithm 6 Delivery of a control packet
Require: queue
Ensure: Reliable delivery of a control packet.

1: retrans← 0
2: do
3: wait until something in queue
4: pkt ← head(queue) . first element in queue
5: seq_number ← random . 8-bit number
6: ack ← 0
7: payload ← get_pkt(dest_node, f orward_node)
8: build_sdwsn6lo_pkt(payload, pkt.node_addr)
9: retrans← retrans + 1

10: timer ← timeout
11: wait for timer expire or good ack
12: while timer expired and retrans < 5)
13: remove pkt from queue

C. Application Plane

This plane makes use of the communication channel be-
tween the application and control plane to send instructions
or received data from the control plane.

The application plane hosts a management software that
handles three different tasks: secure access (middleware),
collecting network information and communication with the
controller.

1) Secure Access: due to the sensitive configuration func-
tions of the IoT network that reside in the control plane, some
form of protection must be used to filter out unauthorized
connections to the controller. To achieve this, a middleware
function is proposed. It uses a MongoDB database [37] to
store authorized network administrators. Only after successful



IEEE SYSTEMS JOURNAL 7

authentication will the middleware allow access to the network
configuration menu.

2) Collection of Network Information: this function over-
comes a common problem in many prior proposals where
little is known about the state of the network. It provides
information about network routes and neighboring nodes along
with RSSI, which is a useful measurement to build cost
matrices in routing protocols.

Many previously suggested network architectures are in-
flexible, mainly because sensor nodes are considered to be
autonomous systems that do not allow the operator to eas-
ily reconfigure or customize the network without changing
hardware. The proposed architecture here allows easy, central
reconfiguration of the routing protocol with a single click in
the management software.

3) Communication with the controller: to achieve this,
the application layer communicates with the controller using
HTTP request and HTTP Post events. This layer has to be
configured with the controller IP address to function, and for
security reasons the network administrator has to previously
authenticate with the server via the middleware function. The
management software can sit at any location of the network
but, to avoid and prevent security issues, it is recommended
that it is placed inside the local network of the controller.

IV. EXPERIMENTAL PLATFORM AND TESTBED

To evaluate the actual performance of the proposed frame-
work architecture, SD-WSN infrastructure was set up using
the TI CC2538 Evaluation Module (EM) [38] for cluster
heads, end nodes and the slip radio. The CC2538 EM was
chosen because of its full software support for Contiki OS
and 6LoWPAN. The CC2538 EM has a CC2538 System-On-
Chip (SOC) for 2.4-GHz IEEE 802.15.4-2006 and ZigBee
applications [39], a PCB antenna, and a micro USB connector
for USB testing. It can be powered by either USB, batteries or
an externally regulated power supply. The CC2538 SoC has
a powerful ARM Cortex-M3 microcontroller with up to 32
KB on-chip RAM and up to 512KB on-chip flash memory,
a clock speed of up to 32 MHz, support of On-Chip Over-
the-Air Upgrade (OTA) and an IEEE 802.15.4 radio [39]. The
EM has enough resources to support Contiki OS and enough
room to introduce new applications. The SmartRF06EB [40]
was also used for debugging in the development stage.

The controller sends and receives packets from the 6LoW-
PAN infrastructure using a slip radio that is directly connected
to a laptop, with a USB 2.0 interface, hosting the controller.
The laptop is equipped with an Intel Core i7 CPU, 16 GB
of RAM and running Linux Mint Rosa 64 bit in a virtual
machine. The controller runs on Contiki OS natively in Linux
Mint. For experimental evaluation regarding the southbound
API and to simplify the deployment, we placed the controller
and the application layer in the same Linux machine as
this does not interfere in the evaluation performance. They
communicate using HTTP request and post events.

The testbed was constructed in the facilities of the Net-
worked Society Institute, located in the Department of Elec-
trical and Electronic Engineering at the University of Mel-
bourne, Australia. Many staff and students in multiple offices

USB

-71 dBm

-89 dBm

-57 dBm

-75 dBm

-93 dBm -79 dBm-97 dBm

-91 dBm

SDN Controller

R3 R2

R5R4

Slip radio

Fig. 4. Testbed setup

TABLE II
SD-WSN6LO SENSOR NODE PARAMETERS

Parameter Value

Protocols

Application Layer SD-WSN6Lo
Transport Layer udp
Internet Layer uip6
Adaptation Layer sicslowpan
MAC Layer nullmac
RDC Layer nullrdc
Radio Layer IEEE 802.15.4

Payload size 20, 40, 60 and 80 Bytes

Packet rate 30 Packets/min

Total packets per payload size 1000 packets

Tx power 3 dBm

Rx sensitivity -97 dBm

Radio Baud rate 250 kbps

are located around the laboratory, which provides a large
amount of dynamic interference from users on the university
wireless network and via their Bluetooth transmissions. Four
wireless sensor nodes and one slip radio were deployed from
approximately five to seven meters apart. The topology and
the average RSSI values of the 6LoWPAN infrastructure are
shown in Fig. 4. The location of R4 was chosen deliberately
to ensure the receiver was close to its performance limits.
This enabled us to examine the capabilities of both protocols
in a WSN with both strong and weak links. This network
deployment closely represents a real WSN deployment where
links are impacted by the surrounding environment.

V. EXPERIMENTAL PERFORMANCE EVALUATION

The performance evaluation is carried out using the hard-
ware presented in Section IV and the network topology shown
in Fig. 4. The parameters of the experiment setup for the SD-
WSN6Lo sensor nodes are shown in Table II.

A. Performance metrics

Similar performance metrics to those used by other workers
in [14], [15], [18], were also used in this work. We considered
five metrics: (i) Round Trip Time (RTT), which is the time it
takes for a packet to go from the source to destination node and



IEEE SYSTEMS JOURNAL 8

back again. RTT is measured using the ping6 command, which
uses the ICMP6 [31] protocol to send an ECHO_REQUEST
datagram to invoke an ICMP ECHO_RESPONSE, with dif-
ferent payload sizes. Measurement of RTT allows us to assess
how the latency is affected by removing the processing- and
energy-intensive functions from the sensor nodes. (ii) jitter,
which is the variation in the packet arrival times and is mea-
sured by calculating the standard deviation of the RTT [41].
Measurement of jitter is important because it reveals underly-
ing problems such as network congestion and route changes.
(iii) Packet Loss Rate (PLR) is the ratio of the total of packets
received versus the total of packets transmitted [42]. This
allows us to compare the efficiency of the two protocols in
delivering data. (iv) Control overhead, which is calculated as
the number of messages flowing in the network other than
data packets and, lastly, (v) memory consumption, which is
the total size of memory used in terms of RAM (Random
Access Memory) and ROM (Read Only Memory). This metric
reveals the amount of memory released when removing the
processing- and energy-intensive functions from sensor nodes.
Freeing up memory allow us to host extra applications in the
sensor nodes. Lastly, this paper does not present any results
related to energy consumption. We are currently investigating
the impacts of SDN in power consumption performance and
scalability in detail for our next paper. However, it is expected
that as the network size increases, that more control packets
will need to flow in the network. When nodes send control
packets periodically, the number of control packets will in-
crease as demonstrated in [15]. Additionally, if the control
packets’ time interval is small, control message overhead in
the network will increase. In general, the control packets’ time
interval mainly depends on the network-specific requirements
and network deployment [36].

B. Results Discussion

The practical evaluation is performed based on the metrics
and RPL protocol discussed previously in Section V-A. We
compare the performance of our SDN approach against the
RPL protocol to show the impacts of SDN in WSNs. In this
case, we ran the shortest path algorithm, as the routing algo-
rithm, in the controller. As discussed formerly in Section III,
we removed the energy intensive functions from the wireless
sensor nodes to a centralized controller. We adopted Contiki
OS as the operating system for the wireless sensor nodes, slip
radio and controller. In contrast, the RPL protocol network
uses a distributed architecture in which sensors act as an
autonomous system but they are also using Contiki OS as
their operating system.

The experiment is carried out based on the parameters
shown in Table II. Since reliability for control packets is
provided by the protocol, the nullmac protocol for MAC
layer was chosen and since no analysis regarding energy
consumption is provided, then the nullrdc protocol for RDC
layer was chosen [26]. RPL nodes also use nullmac and nullrdc
for the MAC and RDC layer, respectively. For the controller,
same MAC protocol is used but a null RDC implementation,
that uses framer for headers and sends the packets over the

Fig. 5. SD-WSN management interface (left), and the controller and slip
radio (right)

slip radio instead of IEEE 802.15.4 radio, is used [26]. We
deployed the WSN infrastructure as shown in Fig. 4. We start
evaluating the performance of the RPL protocol, by sending
1000 ping IPv6 packets with 20 bytes of payload at a packet
rate of 30 packets/min to each sensor node in the network.
Then, we proceed to the next payload. We performed multiple
runs and used a confidence interval of 95%. We repeat the
process for our SDN approach. The performance evaluation
lasts for almost nine hours, and 1600 ping IPv6 packets were
sent for each routing protocol. Fig. 5 shows the developed
SD-WSN platform with the management software and the
controller (PC) directly connected to the slip radio by a USB
cable.

1) Round Trip Time: Fig. 6 shows the performance compar-
ison in terms of RTT for both protocols. In Fig. 6(a), we can
observe that SD-WSN6Lo outperforms RPL protocol for all
payload sizes. Most of the RTT for SD-WSN6Lo, except R4,
lie on the bottom line in the graph, whereas all RTT values for
RPL are above it. Even though the R4 line for SD-WSN6Lo
is not at the bottom line, it is below the R4 line of RPL. It
was expected that R4 would have the worst RTT performance,
in comparison to other nodes, because it has two of the worst
RSSI links, two hops away from the controller. In addition,
Fig. 6(b) represents the cumulative distribution function (CDF)
of RTT for two payload sizes. The curve shape, for R5 in RPL,
shows larger distributions of RTT compare to SD-WSN6Lo.
SD-WSN6Lo outperforms RPL at each of the sensor nodes
and payload sizes.

SD-WSN6Lo shows better performance against RPL, in
terms of RTT, mainly because the controller has a global
view of the WSN infrastructure and can define forwarding
rules for each sensor node in the network, whereas sensor
nodes in RPL act as autonomous systems and make their own
routing decisions. Moreover, the controller maintains good
network performance via the frequent neighbor messages sent
by cluster heads.

2) Jitter: The variation in the packet arrival time is shown
in Fig. 7. It is clear that SD-WSN6Lo has a smaller and a more
stable jitter than RPL, as shown in Fig. 7(a). For SD-WSN6Lo,
the jitter slightly increases with the payload size, whereas
RPL has highly variable jitter. Fig. 7(b) illustrates this via the



IEEE SYSTEMS JOURNAL 9

20 30 40 50 60 70 80

30

40

50

60

70

80
Av

er
ag

e 
R

TT
 (m

s)

Payload size (Bytes)

 R3-SDWSN6Lo
 R4-SDWSN6Lo
 R5-SDWSN6Lo
 R3-RPL
 R4-RPL
 R5-RPL

(a) RTT vs Payload size

20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

RTT (ms)

 R3-SDWSN6Lo(20B)
 R4-SDWSN6Lo(80B)
 R5-SDWSN6Lo(80B)
 R3-RPL(20B)
 R4-RPL(80B)
 R5-RPL(80B)

(b) CDF of RTT for various payloads for nodes R3, R4 and R5

Fig. 6. Performance comparison of RTT

20 40 60 80
0

2

4

6

8

D
el

ay
 (m

s)

Payload size (Bytes)

 R3-SDWSN6Lo
 R4-SDWSN6Lo
 R5-SDWSN6Lo
 R3-RPL
 R4-RPL
 R5-RL

(a) Jitter for different payload sizes

30 40 50 60 70 80 90
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

PD
F

RTT (ms)

 R3-SDWSN6Lo(60B)
 R5-SDWSN6Lo(60B)
 R3-RPL(60B)
 R5-RPL(60B)

(b) PDF of the RTT for a 60 byte payload

Fig. 7. Performance comparison of the variation in packet arrival times

probability distribution function (PDF) of the RTT for 60 and
80 bytes of payload. The better performance of SD-WSN6Lo
is mainly due to the SDN controller managing and maintaining
the network connectivity in a centralized manner, which means
that the processing of the routing algorithm is removed from
the nodes with their limited resources and relatively unreliable
wireless infrastructure. In RPL, routing between nodes can
change often and the sensor nodes perform routing processing
individually, which adds extra delay and jitter into the network.
Thus, SD-WSN6Lo can be used for more critical applications
that require smaller and more stable jitter.

3) Packet Loss Rate: Fig. 8 shows the comparison of the
number of ping6 packets received divided by the total number
of ping6 packets sent by the SD-WSN6Lo and RPL protocols.
The figure shows the packet loss rate percentage for each
sensor node at different payload sizes. We see that the sensor
node with the smallest PLR percentage is R3, which is located
close to the controller and so has good signal strength as shown

in Fig 4. The PLR percentage for R3 increases slightly with
payload size in comparison to the PLR for R4, as expected,
which is located two hops away from the controller and has
two of the weakest RSSI values (-91 and -97 dBm) links of
the network increasing the probability of packet loss. The PLR
for both protocols can be improved by including a MAC layer
protocol that takes care of retransmission of lost packets. The
packet loss experienced by SD-WSN6Lo is mainly due to the
decoupling of the control- and data- planes, which requires
control information to flow from the WSN infrastructure to
the controller in both directions. This increases the congestion
and collisions probabilities. Also, it forwards packets based
on the routing algorithm deployed without measuring any link
quality. Additionally, for applications with low PLR, a proper
routing algorithm has to be run and deployed by the controller.
Yet SD-WSN6Lo was still able to maintain the PLR low
because of the reconfiguration capabilities via the regular of
interaction between the controller and neighboring nodes.



IEEE SYSTEMS JOURNAL 10

20 40 60 80
0%

20%

40%

60%

80%
PL

R
(%

)

Payload size (Bytes)

 R3-SDWSN6Lo
 R4-SDWSN6Lo
 R5-SDWSN6Lo
 R3-RPL
 R4-RPL
 R5-RL

Fig. 8. PLR comparison for different payload sizes

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

25

30

C
on

tro
l o

ve
rh

ea
d 

(k
B)

Time (mins)

 SDWSN6Lo(30s)
 SDWSN6Lo(5mins)
 RPL

Network
config.

Ping starts

Ping ends

Fig. 9. Control overhead comparison

4) Control overhead: To measure the control overhead
introduced by both protocols, we set up the network archi-
tecture in a Contiki COOJA [43] simulator and simulated
the RPL protocol and the SDWSN6Lo protocol with two
different advertisement periods, 30 sec and 5 mins. We then
captured packets flowing in the network for 20 mins. Fig. 9
shows that even though the SDWSN6Lo approach introduced
extra overhead to make the data plane reprogrammable, its
performance is as good as or, in some cases, better than RPL
for an advertisement period of 5 mins. As the advertisement
period of SDWSN6Lo reduces, more overhead will be flowing
in the network. The choice of the advertisement period mainly
depends on the network-specific requirements and network
deployment. For highly dynamic WSNs a small advertisement
period is required to keep the controller aware of any changes
in the network.

5) Memory consumption: Table III shows the memory
usage in terms of RAM and ROM for each node type. The
value called text in the table refers to the size of the code stored

TABLE III
MEMORY CONSUMPTION

Sensor Type text (B) data (B) bss (B) Total (B)
SDN End Node 34735 364 10871 45970
SDN Cluster Head 37858 397 11607 49862
SDN Controller 158996 3370 67792 230158
RPL node 42734 429 11095 54258
Lasso et al. [8] 42656 242 8206 51104

TABLE IV
PERFORMANCE COMPARISON OF TOTAL MEMORY CONSUMPTION

Sensor Type SDN End SDN Cluster RPL Lasso
Node Node Node et al. [8]

SDN End - -7.8% -15.3% -10.1%Node
SDN Cluster 7.8% - -8.1% -2.43%Head

RPL 15.3% 8.1% - 5.81%Node
Lasso 10.1% 2.43% -5.81 -et al. [8]

in ROM. The data and bss memory segments are stored in
RAM. data contains the initialized variables and bss contains
the uninitialized variables [44].

Table IV compares the memory consumption of the new
approach with our previous work in [8] and the RPL protocol.
We can see that the SD-WSN approach significantly reduces
the usage of RAM and ROM, which can either lower costs
or free memory for alternative functionality in the sensor
nodes. The greatest reduction is achieved in SDN End Nodes.
Compared to RPL, it can save up to 15% of total memory used.
This is achieved due to the separation of the control- and data-
planes, which allows the processing intensive functions, such
as the routing algorithms, to be moved from the node to a
centralized controller.

VI. CONCLUSION

In this work, we presented a detailed software-defined
networking management system to enable topology and task
reconfiguration capabilities for IP-enabled WSNs. We in-
vestigated this new framework’s performance via a test-bed
implementation with multiple nodes in the presence of real-
world sources of interference. The results presented proved
the practicality and utility of the framework, and also showed
its superior performance, in the testbed, against the industry-
standard RPL protocol for the key attributes of round trip time,
jitter, packet loss rate, and memory consumption. It achieves
this by having a controller that manages and maintains the
network infrastructure in a centralized manner. The controller’s
global view of the network infrastructure allows it to dy-
namically define forwarding rules for each individual node
in the network. Although there was some control overhead
introduced by bidirectional flow of the necessary control data
packets, packet losses were still as good as, or better than,
RPL in the test-bed comparison. This is a positive outcome
when considering scalability of this scheme beyond the proof-
of-concept presented here, and our future work will focus on



IEEE SYSTEMS JOURNAL 11

this area, as well as the energy consumption introduced by
SD-WSNs approaches.

This work has demonstrated the advantages of using SDN
to reconfigure an IP-enabled WSN as it removes the need for
site visits to upgrade firmware which are expensive. The use
of SDN in large-scale deployments can potentially be achieved
by the use of multiple controllers as investigated in [11].

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[3] S. Vashi, J. Ram, J. Modi, S. Verma, and C. Prakash, “Internet of
Things (IoT): A vision, architectural elements, and security issues,” in
I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), 2017
International Conference on. IEEE, Conference Proceedings, pp. 492–
496.

[4] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke, “A survey
on software-defined wireless sensor networks: Challenges and design
requirements,” IEEE Access, vol. 5, pp. 1872–1899, 2017.

[5] M. Ndiaye, G. P. Hancke, and A. M. Abu-Mahfouz, “Software defined
networking for improved wireless sensor network management: A
survey,” Sensors, vol. 17, no. 5:1031, pp. 1–32, 2017.

[6] S. Bera, S. Misra, and A. V. Vasilakos, “Software-defined networking for
Internet of Things: A survey,” IEEE Internet of Things Journal, vol. 4,
no. 6, pp. 1994–2008, 2017.

[7] Z. Specification, “ZigBee alliance IEEE standard 802.15.4k2013,”
2014. [Online]. Available: https://www.zigbee.org/zigbee-for-
developers/network-specifications/

[8] F. F. J. Lasso, K. Clarke, and A. Nirmalathas, “A software-defined
networking framework for IoT based on 6LoWPAN,” in Wireless
Telecommunications Symposium (WTS), 2018. IEEE, Conference
Proceedings, pp. 1–7.

[9] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. P. Vasseur, and R. Alexander, “RPL: IPv6 routing protocol
for low-power and lossy networks,” Report 2070-1721, 2012.

[10] T. Luo, H.-P. Tan, and T. Q. Quek, “Sensor OpenFlow: Enabling
software-defined wireless sensor networks,” IEEE Communications let-
ters, vol. 16, no. 11, pp. 1896–1899, 2012.

[11] B. T. De Oliveira, L. B. Gabriel, and C. B. Margi, “TinySDN: Enabling
multiple controllers for software-defined wireless sensor networks,”
IEEE Latin America Transactions, vol. 13, no. 11, pp. 3690–3696, 2015.

[12] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, and E. Brewer, “TinyOS: An operating system
for sensor networks,” Ambient intelligence, vol. 35, pp. 115–148, 2005.

[13] R. Fonseca, O. Gnawali, K. Jamieson, S. Kim, P. Levis, and A. Woo,
“The collection tree protocol (CTP),” TinyOS TEP, vol. 123, no. 2, 2006.

[14] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “SDN-WISE:
Design, prototyping and experimentation of a stateful SDN solution for
WIreless SEnsor networks,” in Computer Communications (INFOCOM),
2015 IEEE Conference on. IEEE, Conference Proceedings, pp. 513–
521.

[15] S. Bera, S. Misra, S. K. Roy, and M. S. Obaidat, “Soft-WSN: Software-
defined WSN management system for IoT applications,” IEEE Systems
Journal, 2016.

[16] J. A. Gutierrez, E. H. Callaway, and R. L. Barrett, Low-rate wireless
personal area networks: enabling wireless sensors with IEEE 802.15.
4. IEEE Standards Association, 2004.

[17] IEEE, “Wireless LAN medium access control (MAC) and physical layer
(PHY) specifications,” 2012.

[18] C. Buratti, A. Stajkic, G. Gardasevic, S. Milardo, M. D. Abrignani,
S. Mijovic, G. Morabito, and R. Verdone, “Testing protocols for the
Internet of Things on the EuWIn platform,” IEEE Internet of Things
Journal, vol. 3, no. 1, pp. 124–133, 2016.

[19] I. L. W. Group, “IPv6 over low power WPAN (6LoWPAN).” [Online].
Available: https://datatracker.ietf.org/wg/6lowpan/charter/

[20] C. Orfanidis, “Ph. D. forum abstract: Increasing robustness in WSN
using software defined network architecture,” in Information Processing
in Sensor Networks (IPSN), 2016 15th ACM/IEEE International Con-
ference on. IEEE, Conference Proceedings, pp. 1–2.

[21] IEEE, “Wireless medium access control (MAC) and physical layer
(PHY) specifications for wireless personal area networks (WPAN),”
2004.

[22] J. Portilla, A. De Castro, E. De La Torre, and T. Riesgo, “A modular
architecture for nodes in wireless sensor networks,” J. UCS, vol. 12,
no. 3, pp. 328–339, 2006.

[23] S. Natheswaran and G. Athisha, “Remote reconfigurable wireless sensor
node design for wireless sensor network,” in Communications and
Signal Processing (ICCSP), 2014 International Conference on. IEEE,
Conference Proceedings, pp. 649–652.

[24] K. Goh, S. Ong, Y. Joe, P. Kusolpalin, W. Moh, and K. V. Ling,
“FPGA based wireless sensor node for distributed process monitoring,”
in Industrial Electronics and Applications (ICIEA), 2012 7th IEEE
Conference on. IEEE, Conference Proceedings, pp. 1934–1939.

[25] D. Zeng, T. Miyazaki, S. Guo, T. Tsukahara, J. Kitamichi, and
T. Hayashi, “Evolution of software-defined sensor networks,” in Mobile
Ad-hoc and Sensor Networks (MSN), 2013 IEEE Ninth International
Conference on. IEEE, Conference Proceedings, pp. 410–413.

[26] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki-a lightweight and
flexible operating system for tiny networked sensors,” in Local Computer
Networks, 2004. 29th Annual IEEE International Conference on. IEEE,
Conference Proceedings, pp. 455–462.

[27] J. Martocci, P. De Mil, N. Riou, and W. Vermeylen, “Building automa-
tion routing requirements in low-power and lossy networks,” Report
2070-1721, 2010.

[28] J.-P. Vasseur, M. Kim, K. Pister, N. Dejean, and D. Barthel, “Routing
metrics used for path calculation in low-power and lossy networks,”
Report 2070-1721, 2012.

[29] M. Durvy, J. Abeille, P. Wetterwald, C. O’Flynn, B. Leverett, E. Gnoske,
M. Vidales, G. Mulligan, N. Tsiftes, and N. Finne, “Making sensor
networks IPv6 ready,” in Proceedings of the 6th ACM conference on
Embedded network sensor systems. ACM, Conference Proceedings,
pp. 421–422.

[30] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: Simpli-
fying event-driven programming of memory-constrained embedded sys-
tems,” in Proceedings of the 4th international conference on Embedded
networked sensor systems. Acm, Conference Proceedings, pp. 29–42.

[31] A. Conta, S. Deering, and M. Gupta, “Internet control message protocol
(ICMPv6) for the internet protocol version 6 (IPv6) specification,”
Report 2070-1721, 2006.

[32] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext transfer protocol–HTTP/1.1,” Report 2070-
1721, 1999.

[33] J. Romkey, “Nonstandard for transmission of IP datagrams over serial
lines: SLIP,” Report 2070-1721, 1988.

[34] R. K. Ahuja, Network flows: theory, algorithms, and applications.
Pearson Education, 2017.

[35] T. H. Cormen, Introduction to algorithms. MIT press, 2009.
[36] S. Misra, S. Bera, M. Achuthananda, S. K. Pal, and M. S. Obaidat,

“Situation-aware protocol switching in software-defined wireless sensor
network systems,” IEEE Systems Journal, vol. 12, no. 3, pp. 2353–2360,
2018.

[37] K. Chodorow, MongoDB: The Definitive Guide: Powerful and Scalable
Data Storage. " O’Reilly Media, Inc.", 2013.

[38] T. Instruments, “CC2538 evaluation module kit - CC2538EMK,” 2015.
[Online]. Available: http://www.ti.com/tool/CC2538EMK

[39] ——, “CC2538 powerful wireless microcontroller system-on-chip for
2.4-GHz IEEE 802.15. 4, 6LoWPAN, and Zigbee applications,” CC2538
datasheet (April 2015), 2015.

[40] ——, “SmartRF06 evaluation board user’s guide,” Report, 2017.
[Online]. Available: http://www.ti.com/lit/ug/swru321b/swru321b.pdf

[41] D. Vir, D. S. Agarwal, and D. S. Imam, “A simulation study on node
energy constraints of routing protocols of mobile ad hoc networks use
of qualnet simulator,” International Journal of Advanced Research in
Electrical, Electronics and Instrumentation Engineering, vol. 1, no. 5,
pp. 401–410, 2012.

[42] A. S. Tanenbaum and D. J. Wetherall, Computer Networks (5th).
Prentice Hall, 2010.

[43] F. Osterlind, “A sensor network simulator for the contiki os,” Swedish
Institute of Computer Science, Report T2006-05, 2006. [Online].
Available: http://eprints.sics.se/2296/1/SICS-T–2006-05–SE.pdf

[44] T. R. usage and ROM, “contiki-ng.” [Online]. Avail-
able: https://github.com/contiki-ng/contiki-ng/wiki/Tutorial:-RAM-and-
ROM-usage



IEEE SYSTEMS JOURNAL 12

F. Fernando Jurado-Lasso (GSM’18) received the B.Sc. degree in electronic
engineering from the Universidad del Valle, Cali, Colombia, in 2012. He
also received the M.Sc. in Telecommunications Engineering degree from The
University of Melbourne, Australia, in 2015. He is currently pursuing the
Ph.D. degree with the Department of Electrical and Electronic Engineering,
University of Melbourne.

His research interests include software-defined particularly focus on wire-
less sensor networks, protocols and applications for the Internet of Things.

Ken Clarke received his B.Sc.(hons) in Applied Physics from Heriot-Watt
University, Edinburgh, Scotland, in 1985.

He worked in the optoelectronic and telecommunications industries in
various R&D and engineering roles in both the UK and Australia from 1985-
2010, before moving to the University of Melbourne where he is currently
Deputy Director of the Networked Society Institute. He has published over
50 articles and book chapters, and produced five patents.

Ampalavanapillai Nirmalathas (M’98 - SM’03) received the B.Eng. and
Ph.D. degrees in electrical engineering from The University of Melbourne,
Australia, in 1993 and 1998, respectively. He is currently a Professor with
the Electrical and Electronic Engineering Department, The University of
Melbourne. He is also the Director of the Melbourne Networked Society
Institute, which is an interdisciplinary research institute focusing on challenges
and opportunities arising from society’s transition to a networked society. He
also provides academic leadership to the Melbourne Accelerator Program,
which he co-founded to support entrepreneurial activities of the university
community through business acceleration models. He holds two active in-
ternational patents and one provisional application in the process. He has
authored over 400 technical articles.

His research interests include microwave photonics, optical wireless net-
work integration, broadband networks, and stability of Internet and telecom
services. He is a member of OSA and a Fellow of the Institution of Engineers
Australia.


