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Abstract— The software defined networking framework fa-
cilitates flexible and reliable internet of things networks by
moving the network intelligence to a centralized location while
enabling low power wireless network in the edge. In this paper,
we present SD-WSN6Lo, a novel software-defined wireless man-
agement solution for 6LoWPAN networks that aims to reduce
the management complexity in WSN’s. As an example of the
technique, a simulation of controlling the power consumption
of sensor nodes is presented. The results demonstrate improved
energy consumption of approximately 15% on average per node
compared to the baseline condition.

Index Terms—Wireless sensor networks; Internet of Things;
software-defined networking; 6LoWPAN.

I. INTRODUCTION

The concept of the Internet of Things (IoT) is enabled by the
connectivity of a variety of objects, which are embedded with
processing, sensing and communication capabilities, so they
can work cooperatively to accomplish a common task [1], [2].
The integration of new enabling technologies and innovative
applications are forming a genuine IoT [3]. IoT applications
include precision agriculture, smart cities and smart transporta-
tion systems, require the deployment of thousands of sensor
nodes. In fact, in 2011 the number of interconnected objects
overtook the number of people [3]. However, smart objects are
often constrained by processing power, memory capabilities
and power consumption. Moreover, to have an IoT network
with WSN devices, these devices must be accessible individ-
ually by a unique Internet Protocol (IP) address. To alleviate
the aforementioned issues and satisfy the IoT requirements
and challenges such as scalability, heterogeneity and bridge
the gap between research and practical implementation [4],
the IETF (Internet Engineering Task Force) has established
the 6LoWPAN [5] (IPv6 over Low-Power Wireless Personal
Area Networks) working group. The 6LoWPAN adaptation
layer is crucial to enable connectivity of an increasing number
of objects since it allows transmission and reception of IPv6
packets over IEEE 802.15.4 based networks. In addition, due
to its lightweight implementation and capability to enable
interoperability between heterogeneous devices, 6LoWPAN
has been adopted by many M2M communication systems [6],
[7].

For such applications, there is a need for a WSN manage-
ment system to ensure the network runs smoothly and is easy
to maintain and manage, while also allowing accurate and

efficient modification of different parameters in the network as
circumstances or requirements change. This is the paradigm
of Software-Defined Wireless Sensor Networks (SD-WSN).
The principle of SDN is to decouple the control plane from
the data plane in the network. The control plane manages
complex network operations, while the data plane performs
basic operations such as packet forwarding [8], [9].

Previous efforts by other groups in this domain have taken
various approaches to enable reprogrammable nodes in WSNs.
Luo et al. [10] proposed Sensor OpenFlow (SOF) as a com-
munication protocol between the control and data planes. The
data plane is made reprogrammable by customizing the flow-
table of every node by using the SOF protocol, and the control
plane centralizes the network intelligence in the controller.
Two solutions for flow creation have also been proposed by
this group. Their first solution redefines flow tables, which
classifies WSN addressing by using ZigBee 16-bit network
addresses and concatenated value pairs. Their other solution
is to augment the WSN with IP. However, they do not provide
any performance metrics evidence in the form of a simulation
or practical implementation.

Gallucio et al. [11] proposed SDN-WISE to reduce control
information exchange between the controller and the sensor
nodes. Furthermore, sensor nodes can be programmable as
finite state machines which enables them to make decisions
to reduce the interaction with the controller. However, this
solution has not been implemented in real sensor nodes such
as TelosB [12], Zolertia Z1 [13], etc.

De Oliveira et al. [14] proposed TinySDN which enables
multiple controllers in the WSN. It is based on TinyOS and
it consists of: the SDN-enabled sensor node, which is a data
plane component, and the SDN controller node, which is the
control plane component where all the intelligence resides.
TinySDN was designed to be hardware independent. However,
they do not provide any performance metrics regarding the
benefits that SDN can offer to WSN’s as the evaluation they
provide lacks sufficient detail.

In this paper, we demonstrate for the first time and im-
plement on Contiki OS [15], a software-defined wireless
sensor network framework for 6LoWPAN (SD-WSN6Lo). It
consists of two main components: an SDN Sensor Node,
which forwards packets based on received information from
the controller, and an SDN Controller Node, where all the
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network intelligence resides. It is different from the prior
work presented above in several key areas: it uses the uIPv6
stack, a simulation is provided using emulated Sky [16] and
WiSMote [17] devices, and performance metrics are provided
to indicate the potential and benefits of SDN in WSN’s.

Simulations were conducted using the Contiki COOJA
simulator [18] and the results demonstrate the feasibility of
SD-WSN6Lo in terms of controlling and reducing the power
consumption of the sensor nodes as an example of the system’s
dynamic capabilities.

The remainder of this paper is organized as follows. In
Section II, we introduce the SD-WSN6Lo concept and design.
In Section III, we present the implementation and a detailed
explanation of the simulation scenario. Section IV examines
the simulation results and, finally, Section V summarizes the
work and presents the conclusions as well as ideas for future
work.

II. SYSTEM DESIGN

In this section, we present the proposed system model.
The description of the SDN controller and SDN nodes are
described in detail below.

A. System architecture

The operating system we chose for the sensors nodes is
Contiki OS, which is a lightweight and open source operating
system for IoT designed for resource-constrained devices [15].
The Contiki OS communication stack has three network
stacks: Rime, IPv4, and IPv6. Moreover, Contiki provides a
lightweight TCP/IP stack, 'uIPv6', which is an IPv6 stack for
memory-constrained devices [19].

The protocol we have designed is built on top of the
uIPv6 stack. Our architecture framework follows the SDN
principles, as shown in Fig. 1. The Southbound API is the
protocol running between the two planes and is designated
'SD-WSN6Lo'. The protocol uses the UDP transport protocol
to deliver control messages between SDN Sensor nodes and
the SDN Controller.

The packet format used is shown in Fig. 2. The header is
comprised of Packet length, message type, destination address
and forwarding address. As described in Table I.
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SDN Controller
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Fig. 1. The SDN architecture framework
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Fig. 2. Packet format

Message type defines the type of control message which
can be either Packet-in, Packet-out or Neighbors message.
Following the two types of control messages proposed in [10],
we defined a Packet-in message as a flow set up request sent
by SDN Sensor nodes when they receive a packet that is not in
their routing table, and Packet-out as a control message from
the SDN controller as a response to a Packet-in message. In
addition, the Neighbors messages subtype is used, and sent
by SDN Sensor nodes to the SDN Controller, advertising its
neighbors for further processing.

The Destination address field is used by the SDN Sensor
nodes in a Packet-in message to query the SDN Controller
as to how to treat a packet from this specific address. It is
also used by the SDN Controller in response to a Packet-in
message.

The Forwarding address field is used by the controller
to specify the forwarding address of packets that match the
address in the destination address field.

Although IPv6 addresses are used in the packet header for
illustration of the technique, the large management overhead
involved can be greatly reduced in practical implementations
by utilization of simple node ID’s.

B. SDN Sensor Node

SDN Sensor nodes are devices that run on the data plane of
the SDN architecture. They have two roles in the network.

TABLE I
DESCRIPTION OF THE PACKET HEADER

Type Subtype Description
Packet length Total length of the packet.

Message Type
Packet-in Flow set up request.
Packet-out Flow set up response.
Neighbors Neighbors advertisement.

Destination Address
Used by Sensor Nodes to query the
controller on how to handle packets
with this address.

Forwarding Address

Used by SDN Controller to specify
Forwarding address for packets that
matches the address in destination
address.



They can either be end devices or packet forwarders. An
end device collects data and sends it to the SDN controller.
A packet forwarder sends the packet towards the destination
based on routing information.

An SDN Sensor node has three main components: SDN
Neighbor Discovery, SDN Controller Discovery and an SD-
WSN6Lo protocol component.

Immediately on power-up, the node starts the Neighbor
Discovery component, which allows discovery of neighbors
within range. This component starts broadcasting messages to
nodes within range and replies to broadcast messages received
to complete the Neighbor discovery in the uIPv6 stack.

The SD-WSN6Lo protocol is the main component of the SD-
WSN, which is responsible for setting up all UDP connections,
building and parsing SD-WSN6Lo segments, and implement-
ing Packet-in, Packet-out and Neighbors messages.

C. SDN Controller Node

The SDN Controller Node is a component of the Control
Plane. All the network intelligence resides here. This node
computes SDN controller tasks such as routing algorithms,
user application requirements, and runs the three components
as per the SDN Sensor Nodes.

D. SDN Controller Discovery

The path to the controller is found based on the rank of the
nodes. Nodes calculate their rank based on the number of hops
to the controller and they broadcast this value to neighboring
nodes. The receiving node updates its rank only if the received
rank is better than its current rank. The frequency of checking
rank messages is defined by the user and can be modified by
the SDN Controller Node at any time.

E. SDN neighbors message

This component sends neighboring node addresses to the
SDN controller along with their Received Signal Strength
Indicator (RSSI) and Link Quality Indicator (LQI). Table II
shows an example of the neighbor table sent by Node 4 to the
SDN Controller.

The RSSI is a measurement (in dBm) of the power level
at the received radio signal, whereas LQI is an estimation
of the current quality of the received packet [20]. It is
worth mentioning that LQI is meant to be used in practical
implementations because in a simulated environment is not
yet modeled. The COOJA UDGM (Unit Disk Graph Medium)
model obtains the RSSI value based on the distance between
sensor nodes and uses 37 as default for all LQI values [21].
Therefore, we only use RSSI in our simulation results.

TABLE II
EXAMPLE OF A NEIGHBOR TABLE SENT TO THE SDN CONTROLLER NODE

Node 4
Node Address RSSI(dBm) LQI

fe80::212:7401:1:101 -47 37
fe80::212:7405:5:505 -67 37
fe80::212:7406:6:606 -57 37

III. IMPLEMENTATION

The aim of this section is to demonstrate the individual
elements, the overall orchestration capabilities, and practicality
of the proposed SD-WSN6Lo framework. We look at an
example scenario where we wish to control and optimize each
nodes’ power consumption remotely. This demonstrates the
use of SDN in WSN, using the uIP6 stack, by doing complex
operations at the SDN Controller Node while keeping the SDN
Sensor Nodes as simple as possible. This also demonstrates the
power of SD-WSN6Lo in terms of adaptability, and how SDN
can positively influence the power consumption performance
of a network.

In order to achieve the above goals, we developed the
proposed SD-WSN6Lo framework in Contiki OS [15]. The
simulations were conducted in COOJA [18] which is the
Contiki network simulator. Using COOJA along with standard
C for simulation results, significantly reduced the development
time. Moreover, COOJA facilitates deployment of different
topologies, and the nodes’ transmission power outputs can be
modified while the simulation is running. The latter is used to
provide us with a power consumption analysis.

Two different sensor nodes types were used in the sim-
ulation. A Sky node is used as an SDN Sensor Node and
a WiSMote as an SDN controller Node. Both types support
Contiki OS. A Sky node is an ultra-low power wireless
embedded system for sensor networks, using a CC2420 RF
IEEE 802.15.4 radio wireless transceiver, an MSP430 micro-
controller, 10KB RAM and 48KB of flash memory [16]. A
WiSMote is a low consumption wireless embedded system
for sensor networks, it has a CC2520 RF IEEE 802.15.4 radio
wireless transceiver, an MSP430 5 series microcontroller, 16
KB RAM and up to 256KB of flash memory [17].

A. Simulation Scenario

We have considered a scenario with six sensor nodes
running SD-WSN6Lo to demonstrate the key features without
getting unnecessarily complicated. One node is a WiSMote
sensor node which is the SDN Controller (Node 1), and the
other five nodes are Sky motes which are SDN Sensor Nodes,
as shown in Fig. 3.
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Fig. 3. SDN-WSN6Lo simulation scenario on a 10-meter grid



The SDN Sensor Nodes run the components described in
Part II-B above. The Neighbor Discovery component is first to
start, followed by the SDN Controller Discovery component,
and finally, the SD-WSN6Lo protocol starts and sends the
SDN neighbors message to the SDN Controller.

The SDN Controller has been programmed to perform the
following tasks;

a) Compute the Minimum Spanning Tree (MST): all
vertices and edges in the network are received via the SDN
neighbor’s messages, and the SDN Controller then runs them
in Kruskal’s Algorithm [22]. This builds up an MST of the
network where the edge weights of the graph are given by
the RSSI values. Vertices (Nodes) only forward and receive
packets from adjacent vertices in the MST.

b) Send Packet-Out: since nodes in the MST should only
receive and forward packets from adjacent nodes, the Breadth
First Search (BFS) algorithm [23] has been programmed into
the SDN Controller to find the path to the node and deliver the
corresponding flow set up to every other node in the network.

c) Transmission power adjustment: having built the
MST, we want nodes to only communicate with adjacent
vertices in the MST. Thus, the SDN Controller calculates and
sends a transmission power adjustment message to each node
in the network to adjust their transmission power based on
their longest edge in the MST.

To calculate the transmission power used by each node in
the network, we have characterized the RSSI as a function of
distance. By measuring the strength of wireless signal between
two nodes, the distance between nodes can be obtained by a
function of the RSSI attenuation and the distance [24]. The
UDGM channel model degrades the signal strength with the
increase of the distance between sensor nodes [21]. The RF
output power of the CC2420 radio chip in the sky node can
be controlled by programming the 4-bit PA LEV EL field
of the Transmit Control Register (TXCTRL) [20] as shown in
Table III. We are deliberately using the ideal cases of power
level range at the moment, to demonstrate the basic principles
involved. But, we will revisit this issue in future work when
we refine the model to care of practical issues like shadowing,
interference, etc. Yet, For practical deployments with high
obstacle dense propagation topologies, path loss models such
as MultiWall-Floor model [25] can be used to achieve greater
accuracy for the distance reached by each output power set-up.

The simulation to characterize the RSSI as a function of
distance has been done in COOJA using two sky nodes. One
node is fixed and configured as a receiver node, and the other
node is configured as a sender node. It is then moved in five-
meter increments. The receiving node then measures the RSSI
value at each increment. The simulation was done for every
PA LEVEL. It was found that a sky node transmitting at 0dBm
(the maximum power) cannot be farther than 45 meters from
an adjacent node.

The relationship between different transmitting power levels
and distance range is also shown in Table III.

TABLE III
OUTPUT POWER SETTINGS OF THE CC2420 RADIO AND MAXIMUM

DISTANCE REACHED

PA LEVEL Output Power
(dBm)

Current
Consumption
(mA)

Maximum Dis-
tance(m)

31 0 17.4 < 45
27 -1 16.5 < 40
23 -3 15.2 < 35
19 -5 13.9 < 29
15 -7 12.5 < 22.7
11 -10 11.2 < 16.5
7 -15 9.9 < 10
3 -25 8.5 < 4.5

B. Measurement of energy consumption

The measurement of energy consumption is done using
Powertrace, which is a network-level power profiling for low-
power wireless networks [26]. It tracks the duration of each
power state: CPU, Low Power Mode (LPM), transmitting,
listening, idle transmitting and idle listening.

The energy consumption of a node in a particular power
state is calculated as follows.

Energy(mJ) =

n∑
k=1

PkTk

Where n is the total number of samples. Tk is the time,
at sample k, during the node has been in a particular power
state. Pk is the power consumption (in mW), at sample k, in
a particular power state.

The total energy consumption of a node is the sum of the
consumptions in each power state.

IV. SIMULATION RESULTS

Calculations are done based on the nominal values of the
operating conditions shown in Table IV for Sky [16] and
WiSMote [27], [28] motes. We use 3 V as the nominal value
for the power supply in both mote types.

The SDN Controller computes the MST based on a total of
eight edges received from all nodes. The edges in the MST
are the links between nodes (5, 6), (4, 1), (4, 6), (2, 3) and (2,
1). The nodes adjust their transmission range accordingly, as

TABLE IV
OPERATING CONDITIONS OF SENSOR NODES

Min Nom Max Unit

Sky

Supply Voltage 2.1 3.6 V
Receiving 21.8 23 mA
Transmitting 19.5 21 mA
Active Mode 1800 2400 µA
Low Power Mode 54.5 1200 µA

WisMote

Supply Voltage 2.2 3.6 V
Receiving 18.5 mA
Transmitting 33.6 37.2 mA
Active Mode 2200 2600 µA
Low Power Mode 1.69 2.2 µA



indicated in Fig. 4 by reduced radius circles compared with
those of Fig. 3.

The total energy consumed by each node in the simulation
for a runtime of 20 minutes is shown in Fig. 5. The simulation
time was chosen to allow a sufficient number of exchanged
messages between nodes to occur, which would then allow
reasonable conclusions to be drawn about the practicalities of
the new scheme. This figure shows a comparison between the
energy consumed when nodes are running at full transmission
power (0dBm) and when the nodes adjust their transmission
power based on messages from the controller node. The figure
shows that nodes 2, 3, 4, 5 and 6 modified their transmission
power from 0dBm to -1dBm, - 3dBm, -5dBm, -15dBm and
-5dBm, respectively. As expected in an MST, intermediate
nodes consume more energy than leaf nodes. Note that we
assumed that the SDN Controller has no limitations on power
resources, so its radio transmission power was not reduced
in this example scenario. Thus, its energy consumption was
excluded from the analysis.

The total amount of energy saved by each node after the
SDN Controller sends the power adjustment messages are
shown in Fig. 6. Note that the greatest reduction is achieved by
node 5 because its transmission power can be reduced by the
largest amount given its close proximity to its nearest neighbor.

The percentage of the energy consumed by each node per
power state is shown in Fig. 7. Depending upon the location of
the node in the MST, it can spend more or less time, and hence
energy, in a particular power state. Moreover, SDN Sensor
Nodes spend most energy in their transmitting and receiving
states. Therefore, using the proposed SD-WSN6Lo framework
it would be possible to further reduce the energy consumption
by centrally managing the times of nodes listening and trans-
mitting depending upon, for example, the time of day or the
real-time application requirements.

The description of memory usage of nodes is shown in
Table V. The SDN Sensor Node, running in a Sky device,
used approximately 84% and 89% of RAM and ROM memory,
respectively. The SDN Controller Node, running in a WisMote
device with 256 KB of flash memory, used approximately 63%
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Fig. 4. Simulation scenario - Transmission power adjusted

Fig. 5. Total energy consumed by each node in 20 minutes

Fig. 6. Total percentage of energy saved by each node

Fig. 7. Percentage energy consumed per node in each power state

and 18% of RAM and ROM memory, respectively. The code
resides in the memory segment called text. In the data memory
segment is stored initialized variables and in bss memory
segment resides variables that are uninitialized [29]. Due to
the memory constraints of sky mote [16], a more powerful
sensor node such as [30] can be used to add new features for
instance security algorithm, in-network processing, etc.

V. CONCLUSIONS AND FUTURE WORKS

In this work, we have presented SD-WSN6Lo, a Software-
Defined WSN framework for 6LoWPAN networks. It is built

TABLE V
MEMORY CONSUMPTION

Application text (B) data (B) bss (B) Total (B)
SDN Sensor Node 42656 242 8206 51104
SDN Controller Node 47657 268 10144 58069



on the application layer of the uIP6 stack provided by Contiki
OS. SD-WSN6Lo follows the paradigm of SD-WSN, which
decouples the data plane from the control plane. Moreover,
the SDN Controller can be easily programmed to implement
different network functions such as routing, QoS, firewall, etc.
This novel WSN management application not only provides
a management framework but also conserves the IP network
structure which allows the WSN to use the TCP/IP stack in
6LoWPAN networks. This enables internet connectivity (IoT),
thus allowing additional capabilities such as, for example,
communication between different sensor node manufacturers
that run Contiki OS, and enabling communication with other
networked devices such as routers, M2M, cell phones, etc.

The simulation presented above showed the ease of chang-
ing the network topology through the SDN Controller without
making any firmware modification in the SDN Sensor Nodes.
Moreover, changing parameters, such as the transmission
power, in the SDN Sensor Nodes can be easily achieved
centrally by programming the SDN Controller which oversees
the delivery of messages to each node.

Energy consumption was also considered as a metric to
evaluate the performance of the SD-WSN6Lo. The results
presented show how the WSN can be configured to deliver
messages to every node and how their individual power
consumption can be easily managed. In this case, an MST
routing algorithm was deployed in the SDN Controller and
it calculated the optimal transmission power for each node.
It was found that using this scheme, large energy consump-
tion savings could be made, for example achieving power
reductions of over 24% for nodes in close proximity, or
approximately 15% on average across all nodes.

To the authors’ knowledge, this is the first attempt to
use SD-WSN in a 6LoWPAN network. Several issues are
open to further investigation such as security, scalability, and
latency. For example, since all the network intelligence is
centralized, an attacker may compromise the entire network
by targeting the controller. Therefore, there is a need for
adequate security and countermeasures against cyber-attacks
as researched in [31]–[33]. Furthermore, due to the potentially
large amount of information exchange between the nodes and
controller, both the latency and network management overhead
need to be examined in more detail.
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